वेळ : $1\frac{1}{2}$ (दीड) तास

Code : RDM

प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुस्तिका

2011

यंत्र अभियांत्रिकी स्वयंचल अभियांत्रिकी/ यंत्र अभियांत्रिकी/स्वयंचल अभियांत्रिकी

एकूण प्रश्न : 150 एकूण गुण : 300

1 3

1.0:

(1)	सूर्यः उमेदवारांनी अेकूण 150 प्रश्न सोडवावयाचे आहेत. उमेदवारांन		या प्रकारितकेन
(1)	सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. समवेक्षकांकडून लगेच बदलून घ्यावी.		
(2)	आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.	र्म केंद्राची संकेतासरे	
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट	जागी उत्तरपत्रिकेवरील सूचनेत्रमाणे न विसरता	नमुद करावा.
(4)	या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्याची उत्तरे सुच आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उ अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे ब	तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिके संबंधित प्रश्नक्रमांकासमोर छायांकित करून	वर नमूद करावा. दर्शविला जाईल 🖁
(5)	सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे तितक्या बेगाने प्रश्न सोडवावेत. ऋमाने प्रश्न सोडविणे श्रेयस यालविता पुढील प्रश्नाकडे वळावे . अशा प्रकारे शेवटच्या प्र वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.	कर आहे पण एखादा प्रश्न कठीण वाटल्या	स त्यावर वेळ न 🛱 ॥स कठीण म्हणून /१४
'(6) (7)	उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवारा	च्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिल	ासले जाणार नाही. ले जातील. तसेच
	''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची उ उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी 1		ले जातील. तसेच (ए अन्यथा त्यांच्या कि
En Me	: विशेष स् प्रप्रनपत्रिका विभाग – 'अ', 'ब', 'क' विभागांमध्ये विभाग gineering – Automobile Engineering' मधील प्रश् chanical Engineering' (प्र.क. 121 – 150) किंवा – 180) यापैकी एकाच विभागातील प्रश्न सोडविणे बंधनका	्चना : त्यात आसी आहे. त्यापैंकी 'विभाग – अ – न (प्र.फ. 1 – 120) हे अनिवार्य आहेत. तर विभाग – क – Automobile Engine	Mechanical 'विभाग – ब – eering' (प्र.क.
Г	ताव	ीद	1 #
प	ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संय रीक्षाकक्षात उमेदवाराला परीझेसाठी वापरण्यास देण्या त/प्रती, किंवा सदर् प्रश्नपुस्तिकेतील काही आशय क	त येत आहे. ही वेळ संपेपर्यंत सदर	प्रश्नपुस्तिकेची

व्यक्तीस पुर्रावणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगांच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

22

RDM

विभाग अ (PART A) MECHANICAL ENGINEERING -AUTOMOBILE ENGINEERING

	(1)	rgy stored when load is applied equal to	(2)	1/2
	(3)	twice	(4)	4 times
2.	The	design of a thin cylinder shell i	is based or	h
	(1)	hoop stress		
	(2)	arithmetic mean of the hoop a	nd longitu	dinal stress
	(3)	geometric mean of the hoop ar	nd longitud	linal stress
	(4)	longitudinal stress		
3.	The	bending moment on a section is	s maximur	n where shear force is
	(1)	minimum	(2)	maximum
	(3)	changing sign	(4)	zero
1.		en a bar is subjected to a change stress induced in the bar is	e of temper	rature and its deformation is prevented,
1.			e of temper (2)	rature and its deformation is prevented,
1.	the	stress induced in the bar is	199	
	the (1) (3)	stress induced in the bar is tensile stress	(2)	compressive stress
	the (1) (3)	stress induced in the bar is tensile stress shear stress	(2)	compressive stress
	the (1) (3) Hoo	stress induced in the bar is tensile stress shear stress we's law holds good up to	(2) (4)	compressive stress thermal stress
5.	the (1) (3) Hoo (1) (3)	stress induced in the bar is tensile stress shear stress we's law holds good up to Yield point	(2) (4) (2) (4)	compressive stress thermal stress Elastic limit
5.	the (1) (3) Hoo (1) (3)	stress induced in the bar is tensile stress shear stress ke's law holds good up to Yield point Plastic limit	(2) (4) (2) (4)	compressive stress thermal stress Elastic limit
5.	the (1) (3) Hoo (1) (3) The	stress induced in the bar is tensile stress shear stress ke's law holds good up to Yield point Plastic limit Poisson's ratio for steel varies f	(2) (4) (2) (4) from	compressive stress thermal stress Elastic limit Breaking point
1 . 5 . 6 . 7 .	the (1) (3) Hoo (1) (3) The (1) (3)	stress induced in the bar is tensile stress shear stress ke's law holds good up to Yield point Plastic limit Poisson's ratio for steel varies 1 0.23 to 0.27	(2) (4) (2) (4) from (2) (4)	compressive stress thermal stress Elastic limit Breaking point 0.25 to 0.33
5.	the (1) (3) Hoo (1) (3) The (1) (3)	stress induced in the bar is tensile stress shear stress ke's law holds good up to Yield point Plastic limit Poisson's ratio for steel varies f 0.23 to 0.27 0.31 to 0.34	(2) (4) (2) (4) from (2) (4)	compressive stress thermal stress Elastic limit Breaking point 0.25 to 0.33

www.entranceexams.io

RDM

А

8. Factor of safety is defined as the ratio of

- (1) ultimate stress to working stress
- (2) working stress to ultimate stress
- (3) breaking stress to ultimate stress
- (4) ultimate stress to breaking stress

9. The plane of maximum shear stress has normal stress that is

 (1) maximum
 (2) minimum

 (3) zero
 (4) None of the above

 Bending moment M and torque T is applied on a solid circular shaft. If the maximum bending stress equals to maximum shear stress developed, then M is equal to

(1) T/2 (2) T (3) 2T (4) 4T

11. The slope at the free end of a cantilever carrying a 'UDL', W N/m over a span L is

(1)	$\frac{WL^2}{24 EI}$	(2) $\frac{WL^2}{48 EI}$	(2) WL ⁴	$(4) \frac{WL^3}{6 EI}$
(II)	24 EI	$(2) \frac{WL}{48 EI}$	$(3) \frac{WL}{8EI}$	(4) 6EI

12. In short column failure occurs by

- (1) Pure buckling
- (2) Combination of bending and direct compression
- (3) Direct compression only
- (4) None of the above

13. The diameter of the core circular column of diameter 'd' under any load shall be
(1) d/8
(2) d/6
(3) d/4
(4) d/2

A sudden change in shear force diagram between any two points indicates that there
is

- (1) Point load at both the points
- (2) No loading between two points
- (3) UDL between two points
- (4) Uniformly varying load between two points

SPACE FOR ROUGH WORK

A			5		RDM	
15.	Prir	cipal planes are planes having				
	(1)	Maximum shear stress	(2)	No shear stress		
	(3)	Minimum shear stress	(4)	None of the above		
16.	Posi	tion feedback device on NC Ma	chine is			
	(1)	Shaft encoder	(2)	Linear scales		
	(3)	Inductosyn	(4)	Any of the above		
17.	The	surface finish obtainable in ul	trasonic ma	chining is of the order of		
	(1)	0.2 to 0.5 µm CLA	(2)	2 to 5 µm CLA		
	(3)	20 to 50 µm CLA	(4)	200 to 500 µm CLA		
18.	In metal cutting operation, shear angle is defined as the angle					
	(1) made by the plane of shear with the direction of tool travel					
	(2) made by shear plane with the tool axis					
	(3) made by shear plane with central plane of workpiece					
	(4)	None of the above	_			
19.	Whi	le grinding, the increase in wh	eel speed, v	with constant-feed rate, results in		
	(1)	shining surface	(2)	abrasive mark on workpiece		
	(3)	reduction of chip size	(4)	glazing of wheel		
20.	In o	rthogonal cutting of metals, cu	tting edge	is		
	(1)	perpendicular to the direction	of tool tra	vel		
	(2)	perpendicular to workpiece				
	(3)	perpendicular to shear plane				
	(4)	perpendicular to the axis of c	utting tool			
21.	Van	adium is added to steel as an a	alloying ele	ment to		
	(1)	increase temperature resistan	ce			
	(2)	increase shock resistance	15. 			
	(3)	modify yield and tensile stren	gth proper	ties		
	(4)	soften the material				

www.entranceexams.lo

.

22.	The	relative spacing of abrasive grains of the wheel.	in a	grinding wheel is referred to as the
	(1)	dressing	(2)	truing
	(3)	turning	(4)	shaping
23.	In _	system, all the measuremen	its ar	e taken from a single reference point.
	(1)	Open loop	(2)	Closed loop
	(3)	Absolute	(4)	Incremental
24.	Whi	ch factor decides the selection of grin	ding	wheel ?
	(1)	Abrasive	(2)	Grain size
	(3)	Grade	(4)	Structure
25.	Dep	th of cut of drill of diameter D is		
	(1)	D	(2)	D/2
	(3)	1-5 D	(4)	1-2 D
26.	Gea	r finishing operation is called as		
	(1)	Shaping	(2)	Milling
	(3)	Hobbing	(4)	Burnishing
27.	The	drill spindles are provided with stan	dard	taper known as
	(1)	Morse taper	(2)	Seller's taper
	(3)	Chamfer taper	(4)	Brown taper
28.	Nod	ular cast iron is produced by adding		to the molten cast iron.
	(1)	nickel	(2)	chromium
	(3)	copper	(4)	magnesium
29.	In a	basic NC machine, programmed ins	tructi	ons are stored in
	(1)	Punched tape	(2)	Graphic terminal
	(3)	Head box	(4)	None of the above

A			7		RDM
30.	The	binding material used in cemented	l carbio	le tool is	
	(1)	tungsten	(2)	chromium	
	(3)	silicon	(4)	cobalt	
31.	In e	lectro-discharge machining, dielect	ric is u	sed to	
	(1)	help in the movement of the spar	ks		
	(2)	control the spark discharges			
	(3)	act as coolant			-
	(4)	All of the above			
32.	Inte	rnal gears can be made by			
	(1)	hobbing	(2)	shaping with pinion cutter	
	(3)	shaping with rack cutter	(4)	milling	
33.	In d	rilling operation, the metal is remo	oved by		0 Sá
	(1)	shearing	(2)	extrusion	
	(3)	shearing and extrusion	(4)	shearing and compression	
34.	The	type of tool used on milling maching	ne and	broaching machine is	
	(1)	single point cutting tool	(2)	two point cutting tool	
	(3)	three point cutting tool	(4)	multi-point cutting tool	
35.	Disc	continuous chips are formed during	machi	ning of	
	(1)	brittle metals	(2)	ductile metals	
	(3)	hard metals	(4)	soft metals	MID - 10
36.	The	lead screw of a lathe with nut for	ns a	0	
	(1)	rolling pair	(2)	sliding pair	
	(3)	screw pair	(4)	turning pair	
37.	The	periodic time of one oscillation for	a simp	le pendulum is	
	(1)	$2\pi \sqrt{\frac{g}{I}}$ (2) $\frac{1}{2\pi} \sqrt{\frac{g}{I}}$	(3)	$2\pi \sqrt{\frac{l}{2}}$ (4) $\frac{1}{2}\sqrt{\frac{l}{2}}$	
	1-1	V_l $2\pi V_l$	12.2	\g 2π \g	

www.entranceexams.io

38.	The of	power from the engine to the	rear axle of	an automobile is transmitted by m	eans
	(1)	Worm and worm wheel	(2)	Spur gears	
	(3)	Compound gears	(4)	Hooke's joint	
39.	The	gears are termed as medium	velocity gea	ars, if their peripheral velocity is	
	(1)	1 – 3 m/s	(2)	3 – 15 m/s	
	(3)	15 – 30 m/s	(4)	30 – 50 m/s	
40.	The	gear train usually employed i	n clocks is	a	
	(1)	simple gear train	(2)	reverted gear train	
	(3)	sun and planet gear	(4)	differential gear	
41.	The	size of cam depends upon			52
	(1)	Base circle	(2)	Pitch circle	
	(3)	Prime circle	(4)	Pitch curve	
42.	The	velocity of the belt for maxim	um power i	5	
	(1)	$\frac{T}{3}$ (2) $\frac{Tg}{3}$	(3)	$\sqrt{\frac{T}{3m}}$ (4) $\sqrt{\frac{3m}{T}}$	
43.	Vee	belt E-type cross-sections are	generally u	sed in	
	(1)	Automobiles			
	(2)	Small Engines			
	(3)	When driver and driven unit	s are far of	f	
1	(4)	Heavy duty machine			
44.	For	a machine to be self sustainin	g, the relat	ion between ϕ = angle of friction ar	nd
	α =	slope of threads, is			
	(1)	$\alpha = \phi$	(2)	$\alpha < \phi$	
	(3)	$\alpha > \phi$	(4)	$\frac{\alpha}{\phi} = \text{constant}$	

Note: The Information Provided here is only for Reference.It may vary the Original.

+

RDM

Cylindrical type cam is one

- with cylindrical roller follower
- (2) with cylindrical shape of follower
- (3) with circumferential contour cut in surface of cylinder which rotates about its axis
- (4) with circular type of motion of follower
- 46. Dynamics of machine deals with
 - (1) the relative motion between the parts neglecting the consideration of forces
 - (2) the forces acting on the parts of the machines
 - (3) the apparatus for applying mechanical power
 - (4) the number of inter-related parts, each having a definite motion

47. A disc is spinning with angular velocity ω rad/sec about the axis of spin. The couple applied to the disc causing precision will be :
 where ω_p = angular velocity of precision of axis of spin and I = mass momentum inertia of disc.

(1)	$\frac{1}{2}$ 1 ω^2	(2)	$I\omega^2$
(3)	$\frac{1}{2}$ I $\omega \omega_p$	(4)	Ιωω _ρ

48. A Pentagraph is a mechanism or kinematic arrangement comprising

- (1) a lower pair (2) two lower pairs
- (3) three lower pairs (4) 10 links

The maximum efficiency of screw jack is (μ = tan φ)

(1)	1 - sin φ	(2)	$1 + \sin \phi$	
(1)	$\frac{1 - \sin \phi}{1 + \sin \phi}$	(2)	$\frac{1 + \sin \phi}{1 - \sin \phi}$	
(2)	1 - tan ø	(0)	1 + tan Ø	
(3)	$\frac{1-\tan\phi}{1+\tan\phi}$	(4)	$\frac{1 + \tan \phi}{1 - \tan \phi}$	

50. A differential gear in an automobile is a

- (1) simple gear train (2) epicyclic gear train
- (3) compound gear train
 (4) None of the above

SPACE FOR ROUGH WORK

P.T.O.

51.	A H	artnell governor is a				
	(1)	pendulum type	(2)	spring loaded	type	
	(3)	dead weight type	(4)	inertia type		
52.		en the two pulleys of e, then the angle of c				
	(1)	larger pulley	(2)	smaller pulley		
	(3)	average of two pulley	ys (4)	None of the a	bove	
53.	two	xed gear having 200 gears are connected b revolution of arm abo	y arms. The numbe	r of turns made	by the	•
	(1)	2 (2) 3	(3)	4	(4)	5
54.	The relation between number of pairs (p) forming a kinematic chain and the number of links (I) is					
	(1)	l = 2p - 2	(2)	l = 2p - 3		
	(3)	l = 2p - 4	(4)	l = 2p - 5	2	
55.	The component of the acceleration, perpendicular to the velocity of the particle, a the given instant is called					
	(1)	Radial component	(2)	Tangential con	nponent	i.
	(3)	Coriolis component	(4)	None of the a	bove	
	In a	capillary tube, the w	eight of the liquid	raised is suppo	rted by	
56.	(1)	friction of tube	(2)	vertical compo	onent of	surface tension
56.	(1)		e (4)	vapour pressu	re	
56.	(1)	atmospheric pressure				
56.	(3)	atmospheric pressure		ensity of pressu	ire to	
5	(3)			ensity of pressu specific gravit		ti

				1	1			RDN
58.	Velo of	city potenti	al func	tion when equate	d to a	series of constant	s yiel	ds the equations
	(1)	stream lin	es		(2)	path lines		
	(3)	equipotent	ial line	s	(4)	u and v		
59.		differential al direction		on of fluid in a	curved	I path relates the	presa	sure gradient in
	(1)	normal acc	celerati	on	(2)	tangential accele	ratio	n
1.000	(3)	level differ	rences i	n liquid surface	(4)	angular moment	um	
60.	One	poise is eq	uivalen	t to				
	(1)	360 kg/m-l	hr		(2)	1 dyne sec/cm ²		
	(3)	$\frac{1}{9\cdot 81}$ kgf.	sec/m ²	-	(4)	All of the above		
61.	The	boundary l	ayer th	ickness in turbu	lent fl	ow varies as		
	(1)	x ^{2/3}	(2)	x ^{4/5}	(3)	x ^{1/7}	(4)	x ^{3/7}
62.	The	rate of flow	w throu	gh a venturimete	er vari	es as		
		/HT	(2)	н	(3)	H ^{3/2}	(4)	H^2
	(1)	v11						
63.			ites tha	it pressure at a p	ooint i	s equal in all dire	ection	8
63.	Pase					s equal in all dire in a fluid at rest		8
63.	Pase	al's law sta	at rest			in a fluid at rest		8
63. 64.	Pase (1) (3) The	al's law sta in a liquid in a lamin difference	at rest ar flow in pr		(2) (4) easure	in a fluid at rest in a turbulent fl ed by a mercur	ow	
	Pase (1) (3) The man	al's law sta in a liquid in a lamin difference	at rest ar flow in pr	ressure head m	(2) (4) easure	in a fluid at rest in a turbulent fl ed by a mercur	ow y wa	
64.	Pase (1) (3) The man (1)	cal's law sta in a liquid in a lamin difference cometer for 2.72 m	at rest ar flow in pr a 20 cr (2)	ressure head m n difference of m	(2) (4) easure ercury (3)	in a fluid at rest in a turbulent fl ed by a mercur level will be 2.0 m	ow y wa	ater differential
64.	Pase (1) (3) The man (1)	cal's law sta in a liquid in a lamin difference cometer for 2.72 m	at rest ar flow in pr a 20 cr (2) an exp	ressure head m n difference of m 2·52 m anding tube at c	(2) (4) easure ercury (3)	in a fluid at rest in a turbulent fl ed by a mercur level will be 2.0 m nt rate is called	ow y wa (4)	ater differential 0-2 m

A

RDM

NDIM												
66.						terms of v					10.0	
	0	7.5	m	(2)	8.5 m		(3)	9.81		(4)	10·3 n	n
67.	The	coeff	icient of	f frict	ion for l	aminar flo	w th	rough	a circula	ar pipe is	s given	by
	(1)	F =	$\frac{0.0791}{{\rm Re}^{1/4}}$				(2)	$\frac{16}{\text{Re}}$	= F			
	(3)	F =	64 Re				(4)	F =	12 Re			
68.	The	capil	lary ris	e or f	all of a	liquid is g	iven	by				
	(1)	h =	$\frac{\sigma \cos \theta}{4 \rho g d}$				(2)	h =	$\frac{2\sigma\cos\theta}{\rho \ gd}$			
			4pgd				,		ρgd			
	(2)	h -	8σ cos o gd	θ			(1)	h	9 σ cos θ			
	(3)	n a	pgd			_	(4)	n =	$\frac{9\sigma\cos\theta}{\rho gd}$	S		
69.	A h	ot wir	re anem	omet	er is a d	evice used	for	measu	uring			
	(1)	visc	osity				(2)	velo	city of gas	8		
	(3)	pres	sure of	gases	i.		(4)	velo	city of liq	uid		
70.	Bull	k mod	lulus of	elast	icity				n - 1999			
	(1)	is in	depend	ent of	tempera	ature						
	(2)	incr	eases w	ith pr	essure							
	(3)	is in	depend	ent of	pressur	e and visc	osity					
	(4)	is la	rger wh	en fle	uid is mo	ore compre	ssibl	e				
71.	The	visco	sity of	water	at 20°C	is						
	(1)	1/10	poise			¥3	(2)	1/10	0 poise			
	(3)	1 po	ise				(4)	Non	e of the a	bove		
72.						an elevat = 100 kPa		f 2000) m in an	isothern	nal atm	ospher
	(1)	87		(2)	82		(3)	79		(4)	71	

73.	Due	to variation	of ve	nturimeter co	nstant, ve	enturimeters a	are not su	itable for
	(1)	Low velocit	у		(2)	High velocity	9	
	(3)	Low pressu	ire		(4)	High pressu	re	
74.	Stea	ady flow occu	irs wh	en			n 00	
	(1)	Pressure de	oes no	t change along	g flow			
	(2)	Velocity do	es not	change				
	(3)	Conditions	chang	e gradually w	ith time			
	(4)	Conditions	do no	t change with	time at a	ny time		
75.	In t	urbulent flo	w in a	pipe, we kno	w the			
	(1)	Reynolds n	umber	is greater that	an 10,000			
	(2)	fluid partic	les mo	ve in straight	line			
	(3)	head loss v	aries	inearly with f	low rate			
	(4)	shear stres	s varie	es linearly wit	h radius			
76.	Kelv	vin-Planck's	law de	als with			8 84.	
	(1)	Conservatio	on of v	vork	(2)	Conservation	n of heat	
	(3)	Conservatio	on of r	nass	(4)	Conversion of	of heat int	o work
77.	A cy as	ycle consistin	ng of i	wo constant v	volumes a	and two isothe	ermal pro	cesses is know
	(1)	Carnot cycl	le		(2)	Joule cycle		
	(3)	Diesel cycle	e		(4)	Stirling cycle	е	
78.	reve	ersible heat	engine		ween T ₂ 1	K and 400 K.		K and anothe he engines hav
	(1)	800 K	(2)	1000 K	(3)	1200 K	(4)	1400 K
79.	The	absolute ze	ro tem	perature is				
	(1)	- 273°C	(2)	273°C	(3)	237°C	(4)	- 237°C

RDM		1	4	A
80.	If th	ne flow of air through the compress	or is j	perpendicular to its axis, then it is a
	(1)	reciprocating compressor	(2)	centrifugal compressor
	(3)	axial flow compressor	(4)	turbo compressor
81.	Ene	rgy resources derived from natural	organ	ic materials are called
	(1)	geothermal energy	(2)	fossil fuels
	(3)	biomass	(4)	All of the above
82.	Ene	rgy available in fuels is stored as		
	(1)	heat energy	(2)	chemical energy
	(3)	atomic energy	(4)	explosive energy
83.	Bra	yton cycle process is		
	(1)	Two isentropic and two constant vo	olume	s
	(2)	Two isentropic and two constant pr	ressur	es
	(3)	One constant pressure, one constant	nt vol	ume, two adiabatics
	(4)	Two isothermals and constant volu	me aı	nd constant pressure
84.	Whi	ch one of the following is a heterog	eneou	s system ?
	(1)	The cooling fluid in a radiator	(2)	Atmospheric air
	(3)	Cooking gas in a cylinder	(4)	A mixture of ice, water and steam
	The: exce	Classification of the second second second second consistence of the second second second second second second	impr	oves as a result of all of the following
	(1)	Heating of air before compression	(2)	Inter-cooling of air
	(3)	Reheating of gas	(4)	Multi-stage expansion
86.	In g	as turbine, compressor used is		
	(1)	Reciprocating type	(2)	Centrifugal type
	(3)	Axial flow type	(4)	Lobe type

1

www.		eexar	13.110	_

(2)

(4)

Volume and pressure

All of the above

RDM

87. The entropy may be expressed as a function of

- Pressure and temperature
- (3) Heat and work

88. Maxwell's thermodynamic relations are valid for

(1) Closed system only

*

- (2) All processes of thermodynamics
- (3) Only reversible process
- (4) A thermodynamic system in equilibrium
- 89. Which one of the following introduces irreversibility in the actual Carnot engine operation ?
 - (1) Friction between moving parts
 - (2) Higher operating speed
 - (3) Lower operating speed
 - (4) Changes in pressure and temperature during cycle

90. The universal gas constant of a gas is the product of molecular weight of the gas and

- gas constant
 specific heat at constant pressure
- (3) specific heat at constant volume (4) None of the above

91. In a throttling process

- (1) W = 0 (2) E = 0
- (3) $\Delta H = 0$ (4) All of the above

92. With decrease in cut-off, the efficiency of diesel cycle

- increases
 decreases
- (3) remains constant (4) None of the above

SPACE FOR ROUGH WORK

P.T.O.

99.	Gud	geon pins are made of .	(2)	hardened and ground steel
1	(3)	a high volatility	(4)	a low volatility
	(1)		(2)	· · · · · · · · · · · · · · · · · · ·
98.		quid that boils at a relatively hi		
	(3)	pedal	(4)	brake drum
	(1)	tyre	(2)	wheel
97.	The	brake shoes are curved to confe	orm to th	e inner diameter of the
	(3)	brass	(4)	steel
	(1)	cast iron	(2)	aluminium
96.	The	radiator tubes are manufacture	d by usir	og
	(3)	Oxygen	(4)	None of the above
	(1)	Carbon monoxide	(2)	Carbon dioxide
95.	In t	he Orsat apparatus, KOH soluti	on is use	d to absorb
	(3)	equal to stoichiometric	(4)	None of the above
	(1)	higher than stoichiometric	(2)	lower than stoichiometric
94.	Mea ratio	Figure 3. A second state and second states are second states and second states are second st second states are second	compressi	on ratio is maximum when the air-fue
	(4)	None of the above		
	(3)	any speed as speed does not aff	fect the c	ompression law
	(2)	very high speeds		
	(1)	very low speeds		
93.		reciprocating air compressor, the may be possible at	ne law of	compression desired is isothermal and
nDivi	5		16	A
RDM				

÷ 1

A				1	/						RDI
100.	The	ease with whi	ch a	liquid changes t	o vap	our is cal	lled its				
	(1)	Vapourability			(2)	Volatilit	у				
-	(3)	Boiling point	8	2.	(4)	Viscosit	y				_
101.		mean effectiv ase if cut-off		ressure of diesel	cycle	having	fixed co	ompre	ssion	ratio	wi
	(1)	Increases			(2)	Decreas	es				
	(3)	Independent	of CI	R	(4)	Depend	s upon o	ther fa	actors		
102.	In a	SI engine, ad	vanc	ing of spark timi	ng wi	n				2	
	(1)	Increase knoc	king	tendency							
	(2)	Reduce knock	ing	tendency							
	(3)	Not have any	effe	ct on knocking							
_	(4)	Depend on in	tens	ity of spark only	12			-			
103.	In a	CI engine, sq	uish	is created							
	(1)	towards the e	nd o	f compression str	oke						
	(2)	at the end of	suct	ion stroke							
	(3)	at the beginn	ing o	of suction stroke							
	(4)	during the co	mbu	stion							
104.	More	CO is genera	ully f	formed when						5 - 25	- 10
	(1)	mixture is ric	h in	fuel	(2)	mixture	is lean	in fuel	l.		
	(3)	dust is preser	nt in	fuel	(4)	engine i	s 4 strok	ke .			
105.	Wha	t will happen	if pe	etrol is used in d	icsel o	engine ?					
	(1)	Black smoke	will	be produced							
	(2)	Low power wi	ill be	e produced							
	(3)	Higher knock									
	(4)	The engine w									
106.	Stoid	hiometric air-	fuel	ratio by mass for	com	bustion o	f petrol i	is			
	(1)	5:1	(2)	10:1	(3)	12:1		(4)	15 :	1	

107. For petrol engines, the method of governing employed is

- (1)quantity governing (2) quality governing
- (3)hit and miss governing (4) None of the above

108. Which of the following components is absent in C.I. engine ?

- (1)Carburettor (2) Piston Rings
- Water Jackets (4) Fuel Injector (3)

109. The main purpose of a thermostat in an engine cooling system is to

- (1)allow engine to warm-up quickly
- (2) prevent the coolant from boiling
- (3) pressurize the system

RDM

(4) indicate to the driver the coolant temperature

110. Turbocharger engines are those in which charge density is increased by

- Separate air compressors (1)
- (2) Compressors driven by exhaust gas turbine
- (3) Cooling inlet air
- (4) None of the above

111. In any atom the number of electrons in the last orbit (valence orbit) is limited to

- (1)12 (2)10 4
- (3)8 (4)

112. Which interrupt has highest priority ?

- INTR TRAP (1)(2)
- **RST 7.5 RST 6-5** (3)(4)

113. An unijunction transistor (UJT) has

- (1) 2 p-n junctions and 2 leads
- (2)1 p-n junction and 3 leads

4 leads

(3) 4 p-n junctions

SPACE FOR ROUGH WORK

nformation p rovided here only for Ref iginal mav

(4)

A				19			RDM
114.		ertain Zener diod at is the Zener re		mV cha	nge in V _Z for a	1 2·5 mA c	hange in I _Z .
	(1)	12-5 Ω		(2)	20 Ω		
	(3)	307-5 Ω		(4)	None of the ab	ove	
115.	The	bandwidth of an	ideal op-amp i	8		00 - W S	
	(1)	0 to ∞ operating	frequency rang	çe			
	(2)	0 to 1 operating	frequency rang	e			
	(3)	0 to 100 operation	ng frequency ra	nge			
_	(4)	None of the above	ve				
116.	The	characteristics of	f op-amp do no	t change			
	(1)	with temperatur	e only				
	(2)	with change in o	current only		12.7		
	(3)	with change in v	voltage only				
	(4)	with temperatur	re, current and	voltage			
117.	DC	forward voltage is	s needed to em	it light in	n case of		
	(1)	LED		(2)	LCD		
	(3)	Both LED and I	.CD	(4)	Neither LED n	or LCD	
118.	Whi	ch logic gate is si	imilar to the fu	nction of	two parallel sw	ritches ?	
	(1)	AND (2)	NAND	(3)	OR	(4) NO	DR
119.	The	critical depth me	eter is used to a	neasure			
	(1)	velocity of flow i	in an open chan	nel			
	(2)	depth of flow in	an open channe	el			
	(3)	hydraulic jump					
	(4)	depth of channe	l				
120.	The	piston compressi	on rings are m	ade of			10106485 101
	(1)	cast iron (2)	steel	(3)	aluminium	(4) br	onze

A

विभाग व (PART B) MECHANICAL ENGINEERING

	(1)	40%	(2)	50%	(3)	60%	(4)	70%
122.						ocity of 20 m/s late, if the plat		normally a flat
	(1)	1500 N	(2)	1668 N		1700 N		1768 N
	(1)	1000 14	(2)	1000 11	(0)	1100 14	(4)	1100 11
123.	Jet	pumps are o	often u	sed in process	industry	for their		
	(1)	high efficie	ncy		(2)	easy mainten	ance	82
	(3)	large capao	city		(4)	None of the a	bove	
124.	An	impulse tur	oine					
	(1)	is always o	perate	d submerged				
	(2)	makes use	of dra	ft tube				
	(3)	is most sui	ted for	low head inst	allation			
	(4)	operates by	y initia	l complete con	version t	o kinetic energy	y	
		2000 A. C.		안 안 가 같아요. 아무나는 것 같아?				04 (97 III) (93
125.	A d	ouble acting ke length ar	recipr nd 0-03	ocating pump m ² cross-sect	with 50 tional are	rpm speed and a will have the	l piston oretical	having 400 mm fluid flow of
125.	A de stroi (1)	ke length ar	nd 0-03	ocating pump 3 m ² cross-sect 0.02 m ³ /s	tional are	rpm speed and a will have the 0-6 m ³ /s	oretical	having 400 mm fluid flow of 10 m ³ /s
	stroi (1) A je	ke length ar 0-01 m ³ /s et of water nally on a fi	nd 0-03 (2) issues lat pla	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa	tional are (3) e with a ay from it	a will have the 0.6 m ³ /s velocity of 20 t at 10 m/sec. 1	(4) m/sec a	fluid flow of
	stroi (1) A je norr jet i	ke length ar 0-01 m ³ /s et of water nally on a fi	nd 0-03 (2) issues lat pla	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa	tional are (3) e with a ay from it	a will have the 0.6 m ³ /s velocity of 20 t at 10 m/sec. 1	m/sec a f cross-s e develop	fluid flow of 10 m ³ /s and it impinges ectional area of
126.	stro (1) A je norr jet i is (1)	ke length ar 0-01 m ³ /s et of water nally on a fl s 0-02 m ² ar 10 N	nd 0-03 (2) issues lat pla nd den (2)	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa sity of water i	tional are (3) e with a ay from it is 1000 kg (3)	a will have the 0-6 m ³ /s velocity of 20 t at 10 m/sec. 1 g/m ³ , then force	m/sec a f cross-s e develop	fluid flow of 10 m ³ /s and it impinges ectional area of oed on the plate
126.	stro (1) A je norr jet i is (1)	ke length ar 0-01 m ³ /s et of water nally on a fl s 0-02 m ² ar 10 N	nd 0-03 (2) issues lat pla nd den (2) al pun	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa sity of water i 100 N np impeller wi	tional are (3) e with a ay from it is 1000 kg (3)	a will have the 0-6 m ³ /s velocity of 20 t at 10 m/sec. 1 g/m ³ , then force	m/sec a f cross-s e develop	fluid flow of 10 m ³ /s and it impinges ectional area of oed on the plate
126.	stro (1) A je norr jet i is (1) A fa	ke length ar 0-01 m ³ /s et of water nally on a fl s 0-02 m ² ar 10 N 10 N	nd 0-03 (2) issues lat pla nd den (2) al pun ting bl	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa sity of water i 100 N np impeller wi ades	tional are (3) e with a ay from it is 1000 kg (3) Il have	a will have the 0.6 m ³ /s velocity of 20 t at 10 m/sec. 1 g/m ³ , then force 1000 N	eoretical (4) m/sec a lf cross-s e develop (4)	fluid flow of 10 m ³ /s and it impinges ectional area of oed on the plate
126.	stroi (1) A je norri jet i is (1) A fa (1) (3)	ke length ar 0-01 m ³ /s et of water nally on a fl s 0-02 m ² ar 10 N 10 N ast centrifug forward fac backward f	nd 0-03 (2) issues lat pla nd den (2) al pun cing bl facing b	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa sity of water i 100 N np impeller wi ades	tional are (3) e with a ay from it is 1000 kg (3) Il have (2) (4)	a will have the 0-6 m ³ /s velocity of 20 t at 10 m/sec. 1 g/m ³ , then force 1000 N radial blades propeller type	eoretical (4) m/sec a lf cross-s e develop (4)	fluid flow of 10 m ³ /s and it impinges ectional area of oed on the plate
126.	stroi (1) A je norri jet i is (1) A fa (1) (3)	ke length ar 0-01 m ³ /s et of water nally on a fl s 0-02 m ² ar 10 N 10 N ast centrifug forward fac backward f	nd 0-05 (2) issues lat pla nd den (2) al pun ting bl facing bl facing arge at	3 m ² cross-sect 0.02 m ³ /s from a nozzl te moving awa sity of water i 100 N np impeller wi ades blades	tional are (3) e with a ay from it is 1000 kg (3) Il have (2) (4)	a will have the 0-6 m ³ /s velocity of 20 t at 10 m/sec. 1 g/m ³ , then force 1000 N radial blades propeller type	eoretical (4) m/sec a lf cross-s e develop (4)	fluid flow of 10 m ³ /s and it impinges ectional area of oed on the plate

.

A					21			RDM
129.	The	ratio of pow	er giv	en to the flui	d by the	pump to the sha	ift powe	r is called
	(1)	manometric	c efficie	ency	(2)	hydraulic effici	ency	
	(3)	overall effic	iency		(4)	mechanical effi	ciency	
130.	The	circuit in w	hich h	ydraulic moto	r is locat	ed after the spe	ed contr	ol valve is
	(1)	metered cir	cuit		(2)	meter-in circui	t	
	(3)	meter-out c	ircuit		(4)	bleed-off circuit	t	
131.	In a	ctual practic	e, one	tonne of refr	igeration	is equivalent to		
	(1)	3-0 kW	(2)	3·5 kW	(3)	4·0 kW	(4)	4-5 kW
132.		ironmental j gerants sinc			advise a	gainst the use	of chlor	ro-fluoro-carbon
	(1)			cause acid ra				
	(2)	- N		green house e	effect			
	(3)	oxygen and	cause	depletion				
	1.12							
	(4)	ozone layer						
133.	Am	achine work	ing on			s between 305 K ting machine.	and 26	0 K. Determine
133.	A m the	achine work	ing on		refrigera		and 26	0 K. Determine
133.	A m the (1)	achine work C.O.P. when	ing on		refrigera (2)	ting machine.		0 K. Determine
	A m the (1) (3) In v	achine work C.O.P. when 5.78 0.147	ing on it is o	operated as a	refrigera (2) (4)	ting machine. 6·78	ove	
	A m the (1) (3) In v cycle	achine work C.O.P. when 5-78 0-147 apour compr	ing on it is o ression r	operated as a	refrigera (2) (4) nighest te	ting machine. 6·78 None of the ab	ove • refrige	
134.	A m the (1) (3) In v cycle (1) In a	achine work C.O.P. when 5-78 0-147 apour compr e occurs afte evaporation	ing on it is ression r n (2)	system, the h	refrigera (2) (4) nighest te (3)	ting machine. 6-78 None of the ab mperature of the	ove refrige (4)	rant during the expansion
134.	A m the (1) (3) In v cycle (1) In a	achine work C.O.P. when 5-78 0-147 apour compr e occurs afte evaporation qua-ammoni	ing on it is o ression r r (2) ia and	system, the h	refrigera (2) (4) nighest te (3)	ting machine. 6-78 None of the ab mperature of the condensation a refrigeration s	ove refrige (4) ystem, 1	rant during the expansion
134.	A m the (1) (3) In v cycle (1) In a are	achine work C.O.P. when 5.78 0.147 apour compr e occurs afte evaporation qua-ammoni respectively	ing on i it is o ression r i (2) ia and water	system, the h compression Li-Br water	refrigera (2) (4) highest te (3) absorption	ting machine. 6-78 None of the ab mperature of the condensation a refrigeration s water and Li-E	ove refrige (4) ystem, 1 Br	rant during the expansion
134. 135.	A m the (1) (3) In v cycle (1) In a are (1) (3)	achine worki C.O.P. when 5-78 0-147 apour compre- occurs afte evaporation qua-ammoni respectively water and v ammonia a	ing on i it is o r r i (2) ia and water nd Li-j	operated as a system, the h compression Li-Br water Br	refrigera (2) (4) highest te (3) absorption (2) (4)	ting machine. 6-78 None of the ab mperature of the condensation a refrigeration s water and Li-E	ove refrige (4) ystem, 1 Br water	rant during the expansion the refrigerants
134. 135.	A m the (1) (3) In v cycle (1) In a are (1) (3)	achine worki C.O.P. when 5-78 0-147 apour compre- occurs afte evaporation qua-ammoni respectively water and ammonia a ressure enth sub-cooling	ing on it is o ression r 2 (2) ia and water nd Li- halpy c liquid	system, the h compression Li-Br water Br chart, space to region	refrigera (2) (4) highest te (3) absorption (2) (4)	ting machine. 6-78 None of the ab mperature of the condensation a refrigeration s water and Li-E ammonia and v	ove refrige (4) ystem, 1 Br water	rant during the expansion the refrigerants
134. 135.	A m the (1) (3) In v cycld (1) In a are (1) (3) In p	achine worki C.O.P. when 5-78 0-147 apour compre- e occurs afte evaporation qua-ammoni respectively water and ammonia a	ing on it is o ression r 2 (2) ia and water nd Li- halpy c liquid	system, the h compression Li-Br water Br chart, space to region	refrigera (2) (4) highest te (3) absorption (2) (4)	ting machine. 6-78 None of the ab mperature of the condensation a refrigeration s water and Li-E ammonia and v	ove refrige (4) ystem, 1 Br water	rant during the expansion the refrigerants
134. 135.	A m the (1) (3) In v cycle (1) In a are (1) (3) In p (1)	achine worki C.O.P. when 5-78 0-147 apour compre- occurs afte evaporation qua-ammoni respectively water and ammonia a ressure enth sub-cooling	ing on it is o ression r (2) ia and water nd Li-l nalpy c liquid d vapo	operated as a system, the h compression Li-Br water Br hart, space to region ur region	refrigera (2) (4) highest te (3) absorption (2) (4)	ting machine. 6-78 None of the ab mperature of the condensation a refrigeration s water and Li-E ammonia and v	ove refrige (4) ystem, 1 Br water	rant during the expansion the refrigerants

RDM				2	2				1
137.	Dur	ing humidification	n process,	, dry bulb	temp	perature			
	(1)	increases			(2)	decreases			
1	(3)	remains constan	t	8	(4)	None of the a	bove		
138.	For	summer air-cond	itioning, t	the relati	ve hu	midity should a	not be l	ess than	
	(1)	40% (2)	60%		(3)	75%	(4)	90%	
139.		temperature of sture present in i			nermo	meter, when it	t is not	affected by	th
	(1)	Wet bulb tempe	rature		(2)	Dry bulb tem	perature	e	
	(3)	Dew point temp	erature		(4)	None of the a	bove		
140.	In c	ooling towers, the	e heat is	dissipated	d mai	nly by		-	
	(1)	Convection			(2)	Conduction			
	(3)	Radiation		,	(4)	Evaporation			
141.	Proc	cess type of plant	layout is	suitable	in				
	(1)	Batch and Mass	productio	on	(2)	Jobshop and	Mass pr	oduction	
	(3)	Jobshop and Ba	tch produ	ction	(4)	None of the a	bove		
142.	Tole	rances are specif	ied						
	(1)	to obtain desired	l fits						
	(2)	because it is not	possible	to manuf	acture	e in size exactly	r		
	(3)	to obtain high a	ccuracy						
	(4)	to have proper a	llowance						
143.		ecision making p when it is to be			e whe	en a job is to l	be start	ed in a mach	in
	(1)	Scheduling			(2)	Routing			
	(3)	Master scheduli	ng		(4)	Aggregate pla	nning		

www.entranceexams.io

A 23 RDM 144. The order in which different jobs are being taken up in a machine or process is called (1)Scheduling (2)Sequencing (3)Routing (4) Aggregate planning 145. Optical flats are made of (1) quartz (2) glass (3) plastic (4) steel 146. Object of time study is to determine the time taken by (1) expert worker (2)new employee (3) apprentice (4) average worker 147. Most important characteristic of measuring instrument, in general, is (1) Precision (2)Accuracy (3)Reputability (4) Sensitivity 148. The least count of a metric vernier calliper having 25 divisions on vernier scale matching with 24 divisions of scale (1 main scale division = 0.5 mm) is (4) 0.05 mm (1) 0.005 mm (2) 0.01 mm (3) 0.02 mm 149. The thread micrometer measures (1) major diameter of the thread (2) minor diameter of the thread effective diameter of the thread (3) (4) root diameter of the thread 150. Gantt charts are used for Time study (2)Production schedule (4) None of the above (3) Motion study SPACE FOR ROUGH WORK P.T.O.

RDM

24

A

विभाग क (PART C) AUTOMOBILE ENGINEERING

151.	The	load carrying capacity of a tyre	refers to	0								
	(1)	Aspect ratio	(2)	Ply rating and its size								
	(3)	Type of rubber	(4)	Tyre pressure								
152, 153. 154. 155.	The	The purpose of torque convertor in automobile is										
	(1)	Automatically multiplying engin	ne torque									
	(2)	Automatically multiplying engin	ne speed									
	(3)	Automatically control the speed	of engin	e								
	(4)	Automatically multiplying vehic	le torque	3								
152. / 152. / 153. : 155.] 156. :	X-m	X-member of a car frame ensures improved										
	(1)											
	(2)	resistance to vertical shock loads acting simultaneously on both front wheels										
154.	(3)											
	(4)	지수는 그 같은 것이 같은 것이 가지 않는 것이 가지 않는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 많이 많이 봐. ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ										
152. 153. 153. 154. 155. 156.		the integral type of power brake, the diaphragm acts directly on the hydraulic ston in the										
	(1)	master cylinder	(2)	wheel cylinder								
	(3)	multiplier unit	(4)	None of the above								
155.	In t	he transmission, the reverse idle	r gear a	ways meshes with								
	(1)	counter shaft drive gear	(2)	counter shaft low gear								
	(3)	main shaft reverse gear	(4)	counter shaft reverse gear								
156.	Slip	joint in automotive driveline is	used for									
	(1)	accommodating change in lengt	h of drive	eshaft								
155.	(2)											
	(3)	입에 가장 가장 가장 같은 것 같은										
	(4)	transmitting the torque										
157.	The crumple zones of automotive body											
	(1)	reduce the production cost		4.								
	(2)	increase aesthetic appeal of a v	ehicle	13. 11.								
	(3)	absorb shock during collision										
	(4)	(4) reduce interior noise in a vehicle										
SPAC	CE FO	R ROUGH WORK		-								

А

25

RDM

- 158. Inward tilt of front wheels of a vehicle, from vertical, when viewed from the front, is called
 - (1) toe in (2) castor
 - (3) steering axis inclination (4) camber

159. Torsional coil springs used in automotive clutch plate

- (1) ensure smooth engagement of clutch assembly
- (2) damp engine torsional vibrations
- (3) are provided for applying axial force on the pressure plate
- (4) do not provide damping at all

160. Checking engine oil level before starting a long journey is an example of

- (1) predictive maintenance (2) breakdown maintenance
- (3) preventive maintenance (4) engine overhaul

161. Following should be used for tightening engine cylinder head bolts :

- Torque wrench
 Ring spanners
- (3) Open-ended spanners (4) Allen wrenches

162. The term CAN, with reference to automotive electronics, stands for

- (1) Controllable Artificial Networks
- (2) Computer Assisted Networks
- (3) Controller Area Networks
- (4) None of the above

163. _______ is the principal ingredient used in commercial catalysts to remove NO.

- (1) Aluminium (2) Rhodium
- (3) Platinum (4) None of the above
- 164. A diesel engine has excessive black smoke when started in the morning. Which of these could be the cause ?
 - A bad fuel injector nozzle
- (2) A restricted fuel filter
 - (3) A blocked fuel tank vent
- (4) A leaking fuel return line

SPACE FOR ROUGH WORK

P.T.O.

RDM					26				A		
165.	5. Clashing of gears when shifting into high could result from										
	(1)	engine mi	isalignm	ent	(2)	a defecti	ive synchi	ronise	, ·		
	(3)	drive key	sheared		(4)	None of	the above	e			
166.	Air	resistance	to a car	at 20 k	m/hr is R. The	air resis	tance at				
	(1)	R	(2)	2R	(3)	4R		(4)	R ²		
167.	7. Catalytic converter trouble is indicated by										
	(1)	high CO a	and HC	levels in	the exhaust g	as					
	(2)	a rotten e	gg smel	1							
	(3)	high engin	ne noise	level							
_	(4)	low H ₂ O	level in	the exha	ust gas						
68.	Bac	Back-fire can take place									
	(1)	(1) in both the intake and exhaust manifolds									
	(2)	2) only in the exhaust manifold									
	(3)	only in th	e crank	case	07						
	(4)	only in th	e intake	e manifol	d						
169.	9. The carbon from cylinder head is removed with										
	(1)	Scraper			(2)	Hammer	r				
	(3)	Water		S	(4)	Caustic	soda				
170.	Third party insurance safeguards the interest of										
	(1)	third part	ty only		(2)	driver or	nly				
	(3)	driver and	d third j	party	(4)	owner, t	hird part	y and	vehicle		
71.	The validity of insurance registration and age of vehicle are respectively as										
	(1)	3 years, li	ife time		(2)	1 year, 15 years					
	(3)	5 years, 1	0 years		(4)	Life time	e (any tin	ne), 2	0 years		
172.	India started to adopt European emission norms in the year										
	(1)	2000	(2)	2001	(3)	1999		(4)	2002		

A 173.	27 RD B. Payment of DTT (Day Time Tax) for LMV (Transport) is mandatory for the ne												
		cles registe			(0)								
	(1)	1998	(2)	1999	(3)	2000		(4)	2002			
174.	Out	side rear vi	ew mir	ror is of	ty	pe.							
	(1)	Convex			(2)	Flat							
	(3)	Concave			(4)	'A' gra	de glass	3					
175.	. Life Time Tax (LTT) on two wheelers in Maharashtra is based upon												
	(1)	value/cost	of the	vehicle	(2)	engin	e capacit	ty					
	(3)	unladen w	eight		(4)	regist	ered lad	en wei	ght				
176.	 Total seating capacity of Maxi cabs should not exceed more than excluding the driver. 												
	(1)	6	(2)	12	(3)	10		(4)	14			
177.	. The exhaust gas recirculation (EGR) system is employed for controlling emission of												
		со				CO ai							
	(3)	HC, CO as	nd CO_2		(4)	NOX							
178.	8. First automobile industry set up in India during 1949 is												
	(1)	Premier A	utomob	iles Ltd.	(2)	Autor	nobile Pr	roduct	of	India			
	(3)	Mahindra	and Ma	ahindra Ltd	l. (4)	Bajaj	Tempo I	Ltd.					
179.	. One Time Tax (OTT) is included on the basis of												
	(1)	% of comp	any cos	t vehicle	(2)	% of c	ost of ve	ehicle					
		% of total	cost of	road tax pa	uid (4)	None	of the a	bove					
	(3)). Power assisted steering is associated with										
180.	1975	er assisted	steerin	g is associa	ted with								
180.	1975			g is associa el efficiency		increa	sing the	speed	of	the v	vehicle		

RDM

सूचना - (पृष्ठ 1 वरून पुढे....)

- प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त (8) उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षांच्या कारावासाच्या आणि/किंवा रूपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर (9) परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

प्रशन क. 201. The Catch varies inversely with the size of the :

(1) nozzle (2) droplet (3) obstruction (4) sprayer ह्या प्रश्नाचे योग्य उत्तर "(3) obstruction" हे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल, आता खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "3" चा कंस खालीलप्रमाणे पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

Я.Б. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Provided here is only for Reference.It Note: Information may vary Original