सहायक मोटाउँ वाह्न निरीसह परीसा-४००५

प्रश्नपुस्तिका क्रमांक

100195

BOOKLET NO.

प्रश्नपुस्तिका

वेळ : दीड तास

स्वयंचल अभियांत्रिकी

एकूण प्रश्न : 150 एकूण गुण : 300

सूचना

 सदर प्रश्नपुस्तिकेत 150 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

 आपला परीक्षा-क्रमांक ह्या चौकोनात न विसरता बॉलपेनने लिहावा. परीक्षा-क्रमांक <u>†</u> † रोवटचा संकेताक्षरे अंक

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमृद करावा.
- 4) (अ) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेबरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेबर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेबर उत्तरक्रमांक नमूद कराताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी, ग्रामकिरता फक्त काळया शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नथे.
 - (व) आयोगाने ज्या विषयासाठी मराठी बरोबर इंग्रजी माध्यम विहित केलेले आहे. त्या विषयाचा प्रत्येक प्रश्न मराठी बरोबर इंग्रजी भाषेत देखील छापण्यात आला आहे. त्यामधील इंग्रजीतील किंवा मराठीतील प्रश्नामध्ये मुद्रणदोषांमुळे अथवा अन्य कारणांमुळे विसंगती निर्माण झाल्याची शंका आल्यास, उमेदवाराने संबंधित प्रश्न पर्यायी भाषेतील प्रश्नाशी ताइन पहावा.
- 5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत, घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमृद केलेले उत्तर खोडता येणार नाही. नमृद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. त्या प्राप्त गुणांतून त्यांनी उत्तरपत्रिकेत चुकीची उत्तरे नमूद केल्याबदल गुण बजा केले जाणार नाहीत.

8) ———————————————————————(कृपया पान **उ**लटबा)

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एका वर्षांच्या कारावासाच्या आणि /किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोधी व्यक्ती शिक्षेस पात्र होईल.

100195

- 8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यितिरक्त-उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्यावावतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एका वर्षांच्या कारावासाच्या आणि / किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपली उत्तरपत्रिका समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

7.东. 201.	Petro	l Engi	ine work	s on	cycle	t.		
	(1)	Natu	ral			(2)	Air	
	(3)	Otto				(4)	Carnot	
	यास्तव आहे.						प्रामुळे या प्रश्नाचे उत्तर ''(स पूर्णपणे छार्योकित करुन दार्खा	
	प्र.क्र.	201.	[1]	[2]	•	[4]		
		त्रिकेवरीत	न त्या त्या प्र	रनक्रमांकासमो		पूर्णपणे छाय	त्तरक्रमांक हा तुम्हाला स्वतंत्र्यरी कित करुन दाखवावा, ह्याकरिता	

पर्यवेक्षकांच्या सूचनेविना हे पृष्ठ उलटू नये

P.T.O.

कच्चा कामासाठी जागा Space For Rough Work

AUTOMOBILE ENGINEERING

- 1. The property by which a body regains its original shape after removal of force is defined as
 - (1) plasticity

(2) elasticity

(3) ductility

- (4) malleability
- 2. Bending moment is maximum on a section of a beam where shear force is
 - (1) maximum

(2) minimum

(3) equal

- (4) changing sign
- 3. The ratio of change in volume and original volume of the body is called as
 - (1) tensile strain

(2) compressive strain

(3) shear strain

- (4) volumetric strain
- A shaft of diameter (d) subject to a bending moment (M) and a twisting moment (T) at a section. The maximum shear stress is given by the equation

(1)
$$\tau_{\text{max}} = \frac{16}{\pi d^3} \sqrt{M^2 + T^2}$$

(2)
$$\tau_{\text{max}} = \frac{16}{d^3} \sqrt{M^2 + T^2}$$

(3)
$$\tau_{\text{max}} = \frac{16}{\pi \text{ d}^3} \sqrt{1 + T^2}$$

(4)
$$\tau_{\text{max}} = \frac{16}{\pi d^3} \sqrt{M^2 + 1}$$

- 5. In case of column
 - (1) one end is hinged and other end fixed
 - (2) one end is fixed and other end free
 - (3) both ends are hinged
 - (4) both the ends are fixed rigidly
- Slenderness ratio of a column may be defined as the ratio of its length to the
 - (1) radius of column
 - (2) minimum radius of gyration
 - maximum radius of gyration
 - (4) none of the above

P.T.O.

- What will be the thickness of metal required for a cast iron main 800 mm in diameter for water at a pressure head of 100 m if the maximum permissible tensile stress is 20 MN/m² and weight of water is 10 kN/m³.
 - (1) 15 mm

(2) 20 mm

(3) 25 mm

- (4) 30 mm
- 8. In case of circular section, the section modulus is given by
 - (1) $\frac{\pi d^2}{16}$

(2) $\frac{\pi d^3}{16}$

(3) $\frac{\pi d^3}{32}$

- (4) $\frac{\pi d^4}{64}$
- If the two axes about which the product of inertia is found, are such that the product of inertia becomes zero, the two axes are called as
 - (1) centroidal axes
 - (2) principal axes
 - (3) major and minor axes
 - (4) none of the above
- 10. Which one of the basic equation of simple bending is correct

where

I = Moment of Inertia

E - Modulus of Elasticity

F = Stress at any fibre at a distance of y from neutral axis

M = Bending moment

R = Radius of curvature

(1)
$$\frac{M}{I} = \frac{F}{Y} = \frac{E}{R}$$

(2)
$$\frac{M}{I} = \frac{F}{Y} = \frac{R}{E}$$

(3)
$$\frac{F}{I} = \frac{M}{Y} = \frac{E}{R}$$

(4)
$$\frac{F}{I} = \frac{Y}{M} = \frac{R}{E}$$

11. The shear angle for two dimensional cutting operation is given by an equation

where r = cutting ratio

α = rake angle

φ = shear angle

(1) $\tan \phi = \frac{r \cos \alpha}{1 + r \sin \alpha}$

(2) $\tan \phi = \frac{r \cos \alpha}{1 - r \sin \alpha}$

(3) $\tan \phi = \frac{1 - r \sin \alpha}{r \cos \alpha}$

(4) $\tan \phi = \frac{1 + r \sin \alpha}{r \cos \alpha}$

12. The standard point angle of drill used for drilling a wood and fibre is

(1) 116° to 118°

(2) 130° to 140°

(3) 60°

(4) 125°

13. Which one of the following process is preferred for improving the surface finish of a job?

(1) Milling

(2) Turning

(3) Super finishing

(4) Drilling

14. Which one of the following is a type of brass?

(1) Babbit metal

(2) Gun metal

(3) Monel metal

(4) Muntz metal

15. In which process the principle of electrolysis is used to remove metal from workpiece?

- EDM (Electrodischarge Machining)
- (2) ECM (Electrochemical Machining)
- (3) EDG (Electrodischarge Grinding)
- (4) USM (Ultrasonic Machining)

Hot short phenomenon occurs in steel because of excess amount of

(1) manganese

(2) sulphur

(3) silicon

(4) phosphorus

7

P.T.O.

				AYT						
17.		holding irregular shaped work and able.	carryin	g out eccentric turning is most						
	(1)	four jaw chuck	(2)	three jaw chuck						
	(3)	collet chuck	(4)	face plate						
18.		ognize the type of defect in casting ing with respect to each other.	caused	due to shift of the individual parts of a						
	(1)	Blow holes	(2)	Mismatch						
	(3)	Swell	(4)	Warpage						
19.	Extr	rusion is a type of operation.								
	(1)	Hot Working and Cold Working	(2)	Welding						
	(3)	Casting	(4)	Fitting						
20.	For	holding work piece, which is already	drilled o	or bored, is used on lathe.						
	(1)	collet chuck	(2)	face plate						
	(3)	angle plate	(4)	mandrel						
21.	In la	the, tumbler gear mechanism is used	to contr	ol motion of						
	(1)	tool carriage	(2)	job						
	(3)	tool post	(4)	tail stock						
22.		ch type of thread is generally use	d for s	plit nut of lead screw of screw cutting						
	(1)	Square	(2)	Vee						
	(3)	Butress	(4)	ACME						
23.	A pl	aner differs from shaper in one impor	tant asp	ect that, in planer,						
	(1)	the work is fixed while tool reciproc	cates							
	(2)	the work reciprocates while tool is f	ixed							
	(3)	the work and tool, both move								
	(4)	(4) the work and tool, both do not move								

24.		process of removing metal by an elor easing size, which cut in a fixed path		tool having a number of successive teeth of m as,
	(1)	reaming	(2)	boaring
	(3)	broaching	(4)	honing
25.		property by virtue of which sand mo- molten metal without fusing is known		apable of withstanding high temperature of
	(1)	porosity	(2)	adhesiveness
2	(3)	cohesiveness	(4)	refractoriness
26.	_	threading is generally used for gas	, water	or steam pipe joints.
	(1)	BSW	(2)	BSE
	(3)	BSP	(4)	None of these
27.	Too	l Steel (HSS) has following elements.	8	
	(1)	Tungsten, Chromium, Vanadium		
	(2)	Chromium - Nickel		
	(3)	Tungsten, Chromium, Lead		
	(4)	None of these		
28.	For	marking round shaped work piece	can	be used.
	(1)	Vee block	(2)	Angle plate
	(3)	Try square	(4)	None of these
29.	_	_ are used for withdrawing pattern fr	om the	mould.
	(1)	Riddles	(2)	Draw spikes
	(3)	Vent wire	(4)	Slicks
			752	
30.	Inclu	uded angle of the centre for heavy wor	k in lat	the is
30.	Inclu (1)	uded angle of the centre for heavy wor 45°	k in lat (2)	the is 60°

P.T.O.

31.	Whi	ich one of the following is the bes	st example of	of higher Kinematic Pair ?
	(1)	Universal joint	(2)	Shaft rotating in a bearing
	(3)	Nut turning on a screw	(4)	Cam and follower
32.		ich one of the following relation	ship holds	good to express angle of friction (6) and
	(1)	$tan \phi = \mu$	(2)	$\sin \phi = \mu$
	(3)	$\cos \phi = \mu$	(4)	$\cot \phi = \mu$
33.	The	ratio of pitch diameter to the num	ber of teeth	, in a gear drive is termed as
	(1)	circular pitch	(2)	gear ratio
	(3)	module	(4)	none of the above
34.	thre	aded screw is 42 mm and the pitch r to raise the load. Is the screw sel	h is 10 mm.	w jack. The mean diameter of the square A force of 120 N is applied at the end of a
34.	(1) (2) (3)	aded screw is 42 mm and the pitch	h is 10 mm. If locking?	
34.	three ieve (1) (2) (3) (4) Asset (1) (2)	aded screw is 42 mm and the pitcle of to raise the load. Is the screw self Yes No Insufficient data to predict the re None of the above ertion (A): Spiral cams find its use on (R):	h is 10 mm. If locking? esult see in comp o types of su c) is the con-	A force of 120 N is applied at the end of a uters. uters. urfaces, convex and concave. rect explanation for A
	three leve (1) (2) (3) (4) Asset (1) (2) (3) (4) Whi	aded screw is 42 mm and the pitcle of to raise the load. Is the screw self yes No Insufficient data to predict the re None of the above ertion (A): Spiral cams find its use on (R): Spiral cams have two Both (A) and (R) are true and (R) is true and (R) is not the core (A) is false and (R) is true Both (A) and (R) are false stater	h is 10 mm. If locking? esult see in comp o types of see c) is the con- rect reason ments	A force of 120 N is applied at the end of a uters. arfaces, convex and concave. rect explanation for A for (A)
35.	(1) (2) (3) (4) Asset (1) (2) (3) (4) Whit pin j	aded screw is 42 mm and the pitcle of to raise the load. Is the screw self yes No Insufficient data to predict the re None of the above ertion (A): Spiral cams find its use on (R): Spiral cams have two Both (A) and (R) are true and (R) is true and (R) is not the core (A) is false and (R) is true Both (A) and (R) are false stater of the one of the follower is widely	h is 10 mm. If locking? esult see in comp o types of see c) is the con- rect reason ments	A force of 120 N is applied at the end of a uters. uters. urfaces, convex and concave. rect explanation for A for (A)

37.	Whi	ch of the following circle is imaginary	circle	in study of gears ?
	(1)			Addendum circle
	(3)	Dedendum circle	(4)	All of them
38.	Whi	ch of the following statement is correct	?	
	(1)	The force of friction does not depend	upon	area of contact of two surfaces
	(2)	The magnitude of limiting friction between two surfaces	bears	a constant ratio to the normal reaction
	(3)	The force of friction depend upon are	a of co	entact of two surfaces
	(4)	Both (1) and (2)		
39.	Dyn	amically unbalanced masses in rotating	mach	ines cause
	(1)	vibration	(2)	noise
	(3)	friction	(4)	wear
40.		plate cam mechanism, with reciproceleration in case of	ating	roller follower, the follower has constant
	(1)	cycloidal motion	(2)	S.H.M.
	(1) (3)		(2) (4)	S.H.M. none of the above
41.	(3)		(4)	none of the above
41.	(3) A co	parabolic motion	(4)	none of the above
41.	(3) A co	parabolic motion onstant discharge passing through a consteady uniform flow	(4)	none of the above
41.	(3) A co	parabolic motion onstant discharge passing through a consteady uniform flow steady non-uniform flow	(4)	none of the above
41.	(3) A cc (1) (2)	parabolic motion onstant discharge passing through a consteady uniform flow steady non-uniform flow	(4)	none of the above
41.	(3) A co (1) (2) (3) (4)	parabolic motion onstant discharge passing through a consteady uniform flow steady non-uniform flow unsteady uniform flow	(4)	none of the above
	(3) A cc (1) (2) (3) (4) Visc	parabolic motion onstant discharge passing through a consteady uniform flow steady non-uniform flow unsteady uniform flow unsteady non-uniform flow	(4)	none of the above
	(3) A cc (1) (2) (3) (4) Visc	parabolic motion onstant discharge passing through a consteady uniform flow steady non-uniform flow unsteady uniform flow unsteady non-uniform flow cosity has the dimensions	(4)	none of the above

					AYT					
43.	The	centre of buoyancy of a submerged body								
	(1)	coincides with the centre of gravity of the	b	ody.						
	(2)	is always below the centre of gravity of the	ie	body.						
	(3)	coincides with the centroid of the displac	ed	volume of the fluid.						
	(4)	is always above the centroid of the displa	ce	d volume of the fluid.						
44.	The	type of pump similar to propeller turbine i	S							
	(1)	lobe pump (2)	jet pump						
	(3)	injector pump (4)	axial flow pump						
45.	An	impulse turbine								
	(1)	requires draft tube								
	(2)	(2) is most suited for low head application								
	(3)	(3) operates by initial complete conversion to kinetic energy								
	(4)) is not exposed to atmosphere								
46.	Hyd	raulic intensifier is a device used for								
	(1)	storing energy of fluid in the form of pres	su	re energy						
	(2)	increasing pressure intensity of fluid								
	(3)	transmitting power from one shaft to other	r							
	(4)	none of the above								
47.	Hyd	raulic Ram is a pump which works on								
	(1)	the principle of water hammer								
	(2)	the principle of reciprocating action								
	(3)	the principle of centrifugal action								
	(4)	none of the above								
			_							

48.	Prin	ciple of Hydraulic accumulator	is similar to t	7.2 1.7
	(1)	electrical transformer	(2)	electrical battery
	(3)	electrical generator	(4)	electrical motor
49.	cons			nd then rotated about its vertical axis at a from the open top. At that instant, pressure
	(1)	atmospheric pressure		
	(2)	sub-atmospheric pressure		
	(3)	one fourth of original value		
	(4)	more than atmospheric pressur	re	
50.		fluids which have linear relation		n the magnitude of shear stress and the
	(1)	Ideal fluids		
	(2)	Non- Newtonian fluids		
	(3)	Newtonian fluids		
	(4)	Compressible fluids		
51.	Whi	ich of the following does not rela	ate to a spark	ignition engine ?
	(1)	Ignition coil	(2)	Spark plug
	(3)	Distributor	(4)	Fuel injector
52.	The	ideal cycle on which steam engi	ine works is	
	(1)	Carnot cycle	(2)	Rankine cycle
	(3)	Otto cycle	(4)	Joule cycle
53.	The	isentropic process on Mollier di	agram is repr	resented by
	(1)	horizontal line	(2)	vertical line
	(3)	inclined line	(4)	curved line
_				
			13	P.T.O.

				AYT						
54.	The dryness fraction of steam is equal to									
	whe	re m_g is mass of dry steam and m_f	mass of wa	ater in suspension.						
	(1)	$m_g / (m_g + m_f)$	(2)	$m_f/(m_g + m_f)$						
	(3)	$\rm m_g/\rm m_f$	(4)	$\rm m_f/m_g$						
55.	The	locus of saturated liquid line and s	aturated va	apour line meets at						
	(1)	boiling point	(2)	ice point						
	(3)	triple point	(4)	critical point						
56.	The	effect of under cooling the refriger	rant is to							
	(1)	reduce the refrigerating effect								
	(2)	increase the super heat of vapour	g g							
	(3)	reduce the C.O.P. of the cycle								
	(4)	increase the C.O.P. of the cycle								
57.		ich one of the following conditi	ons is the	most suitable condition for comfort air						
	(1)	25 °C DBT and 100% R.H.								
	(2)	20 °C DBT and 80% R.H.								
	(3)	22 °C DBT and 60% R.H.								
	(4)	28 °C DBT and 40% R.H.								
15120	Whi	ich chemical is liberated during ged	othermal p	ower generation ?						
58.			(2)	Oxygen						
58.	(1)	Sulphur	(2)	Oxygen						

.

AYT	r											
59.	Ass	ertion (A)	: Steam exp	oands in noz	zles of im	pulse stea	m turbine.					
	Rea	son (R):	Pressure o	of steam is c	onverted in	nto kinetic	energy of	steam in th	e nozzles.			
	(1)	Both (A)	and (R) are	true								
	(2)	(2) Only (A) is true										
	(3)	Only (R)	is true									
	(4)	Both (A)	and (R) are	not true								
60.		ing cut-off	governing	of a stea	m engine,	which o	one of the	following	parameter			
	(1)	Speed										
	(2)	Steam pro	essure									
	(3)	Volume o	of steam sup	plied per str	roke							
	(4)	Pressure a	and volume	of steam su	pplied							
61.		ich calorific ower plant?	value of a	fuel should	be conside	ered for ca	lculation o	f thermal e	fficiency of			
	(1)	Lower ca	lorific value	:								
	(2)	Higher ca	lorific value	e								
	(3)	Gross hea	iting value									
	(4)	None of t	he above									
62.	refri	1000000	machine wo fect of 500 l			-1.3			100			
	(1)	317 K			(2)	44 K						
	(3)	44 °C			(4)	233 K						
					15				P.T.O.			

•

- 63. Consider the following statements
 - (A): Efforts are made to harness non conventional energy sources for power generation.
 - (R) : The conventional energy sources will be exhausted soon.

Now select the answer from the following alternatives.

- Both (A) and (R) are true, but (R) is not the correct reason for (A)
- (2) (A) is true, but (R) is false
- (3) (R) is true, but (A) is false
- (4) Both (A) and (R) are true and (R) is the correct reason for (A)
- 64. Match List-I with List-II using the correct code given below :

....

			Li	st-I		List-II
	A	So	lar Er	nergy	1	Ocean waves
	В	Ti	dal Er	nergy	П	Steam from earth
	C	Go	other	mal Energy	Ш	Atomic fission
	D	G	bar g	as plant	IV	Flat plate collector
					V	Anaerobic digestion
	Α	В	C	D		
(1)	1	П	m	IV		
(2)	П	Ш	IV	V		
(3)	IV	I	П	V		
(4)	V	I	11	Ш		

- Assertion (A): The volumetric efficiency of Reciprocating Compressor (with clearance) is always less than 100%.
 - Reason (R): The air present in the clearance volume will expand before the intake conditions are reached and it occupies some volume of cylinder.
 - Both (A) and (R) are true and (R) is not the correct explanation for (A)
 - (2) Both (A) and (R) are true and (R) is true reason for (A)
 - (3) (A) is true, but (R) is false
 - (4) Both (A) and (R) are false

66. The equation of work (with clearance volume) for a reciprocating compressor is given by the equation

where Polytropic law PVⁿ = c

U_a = Effective swept volume

P₁ = Suction pressure

P2 = Final compressor pressure

(1)
$$W = \frac{n}{n-1} \frac{P_1}{U_a} \left\{ \left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right\}$$

(2)
$$W = \frac{n-1}{n} P_1 U_a \left\{ \left(\frac{P_2}{P_1} \right) \frac{n-1}{n} - 1 \right\}$$

(3)
$$W = \frac{n}{n-1} P_1 U_a \left\{ \left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right\}$$

(4)
$$W = \frac{n}{n-1} P_1 U_a \left\{ \left(\frac{P_1}{P_2} \right)^{\frac{n-1}{n}} - 1 \right\}$$

- 67. Isothermal compression for high speed compressor is achieved by the method
 - (1) water jacketing

(2) inter-cooling

(3) external fins

- (4) all the above
- 68. Which one of the following air compressors is generally used in the gas turbines?
 - (1) Axial flow rotary compressors
 - (2) Radial blowers
 - (3) Sliding vane compressors
 - (4) Screw compressors
- The efficiency of vane type air compressor as compared to roots air compressor for the same pressure ratio is _____.
 - (1) more

(2) less

(3) same

(4) may be more or less

17

P.T.O.

AYT

In Reciprocating air compressor the method of controlling the quantity of air delivered is done by

(1) throttle control

(2) blow-off control

(3) clearance control

(4) all the above

The work input to air compressor is minimum if the compression law followed is ______

(1) PV1.35 = C

(2) Isothermal PV = C

(3) Isentropic PV r = C

(4) PV1.2 = C

72. In centrifugal air compressor the pressure developed depends on

(1) impeller tip velocity

(2) inlet temperature

(3) compression Index

(4) all the above

73. The clearance volume in Reciprocating air compressor is provided to

- (1) reduce the work done / kg of air delivered
- (2) increase the volumetric efficiency of compressor
- accommodate valves in the head of the compressor
- (4) create turbulence in the air to be delivered

What should be the intermediate pressure in two stage compression for minimum work of compression?

P_a = Suction pressure

P; = Intermediate pressure

P_d = Delivery pressure

$$(1) \quad P_i = \sqrt{P_a P_d}$$

$$(2) \quad P_i = \frac{P_d}{P_a}$$

$$(3) \quad P_i = P_a \times P_d$$

$$(4) \quad P_i = \sqrt{\frac{P_i}{P_i}}$$

75.		ich of compr			ring efficien	cy is high	nly sensi	itive to a clearance volume of reciprocating
	(1)	Med	chanic	cal ef	ficiency		(2)	Isothermal efficiency
	(3)	Adi	abatio	effic	eiency		(4)	Volumetric efficiency
76.	If th	e don	nestic	refri	gerator is ke	ept in an i	nsulated	room, with its door open
	(1)	the	tempe	eratur	e of the roo	m shall d	ecrease a	after sometime
	(2)	the	tempe	eratur	e of the roo	m shall ir	crease a	ifter sometime
	(3)	the	tempo	eratur	e of the roo	m shall re	emain ur	naffected
	(4)	noth	ning c	an be	predicted a	bout the	tempera	ture of the room
77.	Air	refrig	eratio	n sys	tem operate	s on		
	(1)	reve	ersed	Carno	ot cycle		(2)	reversed Brayton cycle
	(3)	reve	rsed	Otto	cycle		(4)	reversed Stirling cycle
78.					nergy can n other is kno		created	nor be destroyed but can only be converted
	(1)	Avo	gadro	s's hy	pothesis		(2)	Gay-Lussac's law
	(3)	Seco	ond L	aw o	fthermodyn	amics	(4)	First Law of thermodynamics
79.	Mat	ch Lis	st-I w	ith Li	st-II and sel	ect the co	orrect co	de.
			Li	st-I			List-I	I
		A	Н	eavy v	water	I	Diesel	Engine
		В	Ra	nkin	e cycle	П	Gas T	urbine
		C	Fu	el pu	mp	Ш	Therm	al Power Plant
		D	Ai	r con	pressor	ſV	Nuclea	ar Reactor
		Α	В	C	D			
	(1)	Ш	I	П	IV			
	(2)	П	IV	Ш	I			
	(3)	I	Ш	П	IV			
	(4)	IV	ш	1	П			
							19	Р.Т.О.

□ AYT

- 80. Select a false statement for Spark Ignition (SI) engine.
 - (1) It is based on Otto cycle
 - (2) Requires an ignition system with spark plug in the combustion chamber
 - (3) Compression ratio = 6 to 10.5
 - (4) Low self ignition temperature of fuel is desirable
- 81. The thermal efficiency of the ideal diesel cycle is given by equation

where ρ = Cut off ratio

R = Compression ratio

(1)
$$\eta = 1 - \frac{1}{R^{r-1}} \left(\frac{\rho^r - 1}{r(\rho - 1)} \right)$$

(2)
$$\eta = 1 - \frac{1}{R^{r-1}}$$

(3)
$$\eta = 1 - \frac{1}{R^{r-1}} \left(\frac{r(p-1)}{p^r - 1} \right)$$

- (4) none of the above
- In an ideal Otto cycle the air standard efficiency is 56.5%. If the heat added during the constant volume process is 1000 kJ/kg, determine the work done.
 - 1000 kJ/kg

(2) 1500 kJ/kg

(3) 565 kJ/kg

- (4) None of the above
- 83. The duration of the ignition lag in an engine depends on the factors like
 - (1) chemical nature of fuel
- (2) mixture ratio

(3) electrode gap

- (4) all the above
- 84. Select the most appropriate sentence applicable to knocking phenomena of the S.I. engine
 - In S.I. engine, the detonation occurs near the end of combustion.
 - (2) In S.I. engine, the detonation occurs near the beginning of combustion.
 - (3) In S.I. engine, the detonation is of a heterogeneous mixture causing very low rate of pressure rise.
 - (4) None of the above

AYT	ſ							
85.	part	of the induction system in an e		mixes it with air, and is the most importan				
	(1)	Spark plug	(2)	Exhaust manifold				
	(3)	Carburettor	(4)	Silencer				
86.	Wh	ich one of the following device	is needed for	carburettor used in aircraft application ?				
	(1)	Altitude mixture correction de	evice					
	(2)	Automatic de-icing unit to av	oid formation	of ice in the choke tube				
	(3)	Both (1) and (2)						
	(4)	None of the above						
87.	for o		s fuel consum	nation of engine friction is only applicable aption is plotted against brake power and it?				
	(1)	Morse test	(2)	Motoring method				
	(3)	Deceleration method	(4)	William's line method				
88.	In a	diesel engine						
	(a)	fuel injection pump is used						
	(b)	fuel injection pump and carbu	rettor is used					
	(c)	fuel injector is used						
	(d)	neither fuel injection pump no	or injector is u	sed				
	(1)	(a) alone is true	(2)	(c) alone is true				
	(3)	(a) and (c) both are true	(4)	(a), (b), (c), (d), all are true				
89.	Subcooling is a process of cooling the refrigerant at constant pressure, in a var compression plant							
	(1)	after compression	(2)	before throttling				
	(3)	before compression	(4)	after evaporation				
90.	Whi	ich of the following is a fossil fi	uel ?					
	(1)	Coal	(2)	Wood				
	(3)	Natural Uranium	(4)	Hydrogen				
_			21	P.T.O.				

					AYT		
91.	The	two stroke cycle engine has port i	n the				
	(1)	cylinder walls	(2)	pistons			
	(3)	piston rings	(4)	cylinder head			
92.	In a	diesel engine fuel and air mixture	is ignited b	by the help of			
	(1)	a spark plug	(2)	a glow plug			
	(3)	an injector	(4)	temperature of compressed air			
93.	On	many engines, the valve timing ca	n be checke	ed by means of marking on the			
	(1)	engine fly wheel	(2)	valve guide			
	(3)	vibration damper	(4)	valve cover			
94.	The	purpose of chilled passage in the	crank shaft	s is to			
	(1)	lubricate the main bearings					
	(2) lubricate the connecting rod bearings						
	(3)	reduce the manufacturing cost					
	(4)	none of the above					
95.	Mul	tiple jet compensation is a provisi	on for				
	(1)	overcoming difficulties at differ	ent speeds i	n petrol engines			
	(2)	(2) multipoint fuel injection in petrol engines					
	(3)	(3) advanced electronic fuel injection system on petrol engines					
	(4)	efficient operation of super char-	gers at high	altitude			
96.	The	contact breaker points gap can be	adjusted by	y			
	(1)	stroboscope	(2)	tachometer			
	(3)	ignition tester	(4)	feeler gauge			
97.	The	radiator core is generally made up	of				
	(1)	stainless steel	(2)	nichrome			
	(3)	brass	(4)	white metal			

AII								
98.	Cyli	inder wear is measured with						
	(1)	vernier	(2)	micrometer				
	(3)	dial gauge	(4)	bore dial gauge				
99.	Dur	ing the power stroke in a four stroke	engine,	the inlet valve and exhaust valves are				
	(1)	closed and opened respectively						
	(2)	both closed						
	(3)	opened and closed respectively						
	(4)	one open and other closed						
100.	The	part that tends to keep the valve clos	ed is cal	lled the				
	(1)	valve guide	(2)	valve retainer				
	(3)	valve spring	(4)	valve lifter				
101.	The pump part that rotates and causes water circulation between the radiator and the engin							
	(1)	fan	(2)	by-pass				
	(3)	thermostat	(4)	impeller				
102.		ing high speed operation when the the	rottle is	wide open, the fuel supplied to the engine				
	(1)	low-speed port						
	(2)	idle port						
*	(3)	main nozzle						
	(4)	both low speed and idle port						
103.	The pressure in the vicinity of main jet of a carburettor remains							
	(1)	above atmospheric pressure						
	(2)	equal to atmospheric pressure						
	(3)	much below atmospheric pressure						
	(4)	very high pressure						
			23	P.T.O.				

r.1.0.

				A			
104.	The	amount of heat energy equivalent	t lost in over	recoming engine friction is			
	(1)	30%	(2)	20%			
	(3)	15%	(4)	5%			
105.	The	rmal efficiency of a two stroke cy	cle engine is	a four stroke cycle engine			
	(1)	less than	(2)	greater than			
	(3)	equal to	(4)	greater than or equal to			
106.	The	firing order of an I.C. engine dep	ends upon				
	(1)	design of crankshaft	(2)	no. of cylinders			
	(3)	arrangement of cylinders	(4)	all of the above			
107.	Thre	ottle valve is used in carburettor f	or				
	(1)	controlling the air admitted to v	enturi				
	(2)	controlling the air admitted and	oil admitted	I to engine			
	(3) controlling the air-petrol mixture admitted to engine						
	(4)	controlling the mixture of air an	d fuel in the	mixing chamber			
108.	Con	nmonly used antifreeze solution in	n automobile	es is			
	(1)	Glycerinc	(2)	Liquid ammonia			
	(3)	Ammonium chloride	(4)	Carbon disulphide			
109.	Wha	at is Vapour Lock ?					
	(1)	Phenomenon of irregular supply	of petrol de	ue to vapour formation at higher temp.			
	(2)	Phenomenon of cut off diesel su	ipply				
	(3)	Phenomenon of overflow of pet	rol				
	4. 4						

Eng	ine cranks do no start during wint	er because	of				
(a)	battery discharge	(b)	weak spark				
(c)	worn out engine	(d)	lean mixture				
(1)	(a), (b) and (c) are correct	(2)	(b), (c) and (d) are correct				
(3)	(c), (d) and (A) are correct	(4)	(d), (a) and (b) are correct				
(1)	turn in clockwise direction	(2)	turn in anticlockwise direction				
(3)	turn in either direction	(4)	remain stationary				
Toro	que converter can replace						
(a)	gear box						
(b)	clutch						
(c)	fluid fly wheel						
(1)	(a) alone is correct	(2)	(b) alone is correct				
(3)	(c) alone is correct	(4)	(a) and (b) are correct				
Flywheels are used in							
(a)	bicycles						
(b)	starting motor						
(c)	gear boxes						
(1)	(a) alone is correct	(2)	(c) alone is correct				
(3)	(a) and (c) are correct	(4)	all are correct				
Inde	pendent suspension on all four wh	heels is used	d in				
(1)	Maruti 800 car	(2)	A.C. sports car				
(3)	Morgon plus 8 car	(4)	Fiat 1100 car				
The	brake pipes in hydraulic brake sys	stem are ma	ide of				
(1)	rubber	(2)	steel				
(3)	pvc	(4)	aluminium				
	(a) (b) (c) (1) (3) Toro (a) (b) (c) (1) (3) Flyv (a) (b) (c) (1) (3) Inde (1) (3)	Engine cranks do no start during wint (a) battery discharge (c) worn out engine (1) (a), (b) and (c) are correct (3) (c), (d) and (A) are correct When the rear wheels are jacked up rear drive in anticlockwise direction, (1) turn in clockwise direction Torque converter can replace (a) gear box (b) clutch (c) fluid fly wheel (l) (a) alone is correct (3) (c) alone is correct Flywheels are used in (a) bicycles (b) starting motor (c) gear boxes (l) (a) alone is correct (3) (a) and (c) are correct Independent suspension on all four with the suspension of the suspen	Engine cranks do no start during winter because (a) battery discharge (b) (c) worn out engine (d) (1) (a), (b) and (c) are correct (2) (3) (c), (d) and (A) are correct (4) When the rear wheels are jacked up and gears a rear drive in anticlockwise direction, will cause to (1) turn in clockwise direction (2) (3) turn in either direction (4) Torque converter can replace (a) gear box (b) clutch (c) fluid fly wheel (1) (a) alone is correct (2) (3) (c) alone is correct (4) Flywheels are used in (a) bicycles (b) starting motor (c) gear boxes (1) (a) alone is correct (2) (3) (a) and (c) are correct (4) Independent suspension on all four wheels is used (1) Maruti 800 car (2) (3) Morgon plus 8 car (4) The brake pipes in hydraulic brake system are mare (1) rubber (2)				

P.T.O.

								AYT	
116.	Traf	ficato	rs are	e ligh	ts used for				
	(1)	heav	y tra	ffic					
	(2)	light	traff	ic					
	(3)	reve	rsing	the c	ar in traffic	:			
	(4)	indic	ating	g the	direction in	which it	turns		
117.	Alu	miniur	n cyl	linder	blocks req	uires			
	(1)	no li	ners				(2)	aluminium liners	
	(3)	bras	line	ers			(4)	cast iron liners	
118.	The	value	s of v	wheel	lock angle	and the st	eering le	ock angle respectively are about	
	(1)	46°	and 4	3°			(2)	20° and 23°	
	(3)	23°	and 2	0°			(4)	43° and 46°	
119.	Whi	Which of the following is correct statement?							
	(1)	The	car b	onne	t should ha	ve a longe	r length		
	(2)	The	textu	re of	a hard top	roof is dif	ferent fr	om its body work	
	(3)	Side	imp	act ca	n be minin	nized by 2	+ 2 seat	ting layout	
	(4)) A reclining seat and side shift aisle seat are almost the same							
120	14-4	oh I is				ahaasa th		et answer from the codes given below the	
120.	lists		i-1 v	vith I	ist-II and	choose th	e correc	t answer from the codes given below the	
120.			61-1 V		ist-II and	choose th		ist-II	
120.					ist-I	l.	L		
120.			Ta O	Li achon	ist-I neter ter		L Bimet Decib	.ist-II al electric type el	
120.		A.	Ta O	Li	ist-I neter ter	1.	Bimet Decib 90 km	.ist-II al electric type el ph	
120.		А. В.	Ta Oc Fu	Li achon dome	ist-I neter ter	1. 2. 3. 4.	Bimet Decib 90 km 6000 i	.ist-II al electric type el ph rpm	
120.	lists	A. B. C. D.	Ta Oc Fu	Li achon dome	ist-I neter ter uge	1. 2. 3.	Bimet Decib 90 km	.ist-II al electric type el ph rpm	
120.		A. B. C. D.	Ta Oc Fu Pr	Li achon dome dome ga ressur	ist-I neter ter uge e horn	1. 2. 3. 4.	Bimet Decib 90 km 6000 i	.ist-II al electric type el ph rpm	
120.	Cod	A. B. C. D.	Ta Oc Fu Pr	Li achone dome iel ga ressur	ist-I neter ter uge e horn	1. 2. 3. 4.	Bimet Decib 90 km 6000 i	.ist-II al electric type el ph rpm	
120.	Cod (1)	A. B. C. D.	Ta Ov Fu Pr	Linchon dome dome iel ga ressur C	ist-I neter ter uge e horn D 2	1. 2. 3. 4.	Bimet Decib 90 km 6000 i	.ist-II al electric type el ph rpm	
120.	Cod (1) (2)	A. B. C. D. Re: A 4 5	Ta Ov Fu Pr B 5	Linchon dome dome dome dome del ga ressur C	neter ter uge e horn D 2	1. 2. 3. 4.	Bimet Decib 90 km 6000 i	.ist-II al electric type el ph rpm	
120.	Cod (1)	A. B. C. D.	Ta Ov Fu Pr	Linchon dome dome iel ga ressur C	ist-I neter ter uge e horn D 2	1. 2. 3. 4.	Bimet Decib 90 km 6000 i	.ist-II al electric type el ph rpm	

The	spark plug generally is to be	replaced when	the vehicle has run about					
(1)	5000 km	(2)	10000 km					
(3)	15000 km	(4)	20000 km					
The recommended oil change schedule for cars is								
(1)	15000 km	(2)	one year duration					
(3)	9 months duration	(4)	10000 km					
[No	te: Assume in each option of	other recommend	ded schedule has not yet attained.]					
		the engine-clutch	n-gear box unit is supported on the chassis					
(1)	one	(2)	two					
(3)	three	(4)	four					
The	most effective section of fran	me against bendi	ing is					
(1)	rectangular bar section							
(2)	round bar section							
(3)	round hollow section							
(4)	square hollow section							
Why	bendix drive is provided for	r a starter ?						
(1) To restart the drive pinion from flywheel after the engine starts								
(2)	To start the motor							
(3)	To drive flywheel							
(4)	To operate solenoid							
		e which connec	ets tractor to the trailer by a fifth wheel					
(1)	6 × 5	(2)	8 × 5					
(3)	rigid	(4)	articulated					
		27	P.T.O.					
	(1) (3) The (1) (3) [No The fram (1) (3) The (1) (2) (3) (4) Why (1) (2) (3) (4) The coup	The spark plug generally is to be (1) 5000 km (3) 15000 km The recommended oil change self (1) 15000 km (3) 9 months duration [Note: Assume in each option of The number of points at which of frame is (1) one (3) three The most effective section of fram (1) rectangular bar section (2) round bar section (3) round hollow section (4) square hollow section (b) To restart the drive pinion of (c) To start the motor (d) To drive flywheel (e) To operate solenoid The type of commercial vehicle coupling is called (1) 6 × 5	The spark plug generally is to be replaced when (1) 5000 km (2) (3) 15000 km (4) The recommended oil change schedule for cars is (1) 15000 km (2) (3) 9 months duration (4) [Note: Assume in each option other recommend The number of points at which the engine-clutch frame is (1) one (2) (3) three (4) The most effective section of frame against bendin (1) rectangular bar section (2) round bar section (3) round hollow section (4) square hollow section Why bendix drive is provided for a starter? (1) To restart the drive pinion from flywheel af (2) To start the motor (3) To drive flywheel (4) To operate solenoid The type of commercial vehicle which connection is called (1) 6 × 5 (2) (3) rigid (4)					

				AYT						
127.	A cl	A clutch is usually designed to transmit maximum torque which is								
	(1)	(1) equal to the maximum engine torque								
	(2) 80 percent of the maximum torque									
	(3)	150 percent of the maximum tore	que							
	(4)	none of the above								
128.	The	oil flow in the torus of a torque co	nverter is	of						
	(1)	spiral and vortex type								
	(2)	steady, uniform and laminar type	rs							
	(3)	vortex, rotary and spiral types								
	(4)	none of the above								
129.	Coefficient of friction between the correctly inflated tyre of a jeep and the icy surface of Srinagar in Jammu and Kashmir is about									
	(1)	0.01	(2)	0.55						
	(3)	111.3	(4)	0.10						
		For the best braking performance the braking effort on the front wheels and the rear wheels are in the following proportion:								
130.		경기 경기 기업	braking eff	ort on the front wheels and the rear wheels						
130.		경기 경기 기업	braking eff	ort on the front wheels and the rear wheels 40%; 60%						
130.	are i	n the following proportion :	3 0 0 3 1 5 0 0 0							
	(1) (3)	n the following proportion : 50%; 50% 60%; 40%	(2) (4)	40%; 60%						
	(1) (3)	n the following proportion : 50%; 50% 60%; 40%	(2) (4)	40%; 60% 45%; 55%						
	(1) (3) Cap	n the following proportion : 50%; 50% 60%; 40% acity of storage battery to convert	(2) (4) chemical e	40%; 60% 45%; 55% nergy into electrical energy is tested by						
131.	(1) (3) Cap (1) (3)	n the following proportion: 50%; 50% 60%; 40% acity of storage battery to convert hydrometer test	(2) (4) chemical e	40%; 60% 45%; 55% nergy into electrical energy is tested by high discharge test						
131.	(1) (3) Cap (1) (3)	n the following proportion: 50%; 50% 60%; 40% acity of storage battery to convert of hydrometer test specific gravity test	(2) (4) chemical e	40%; 60% 45%; 55% nergy into electrical energy is tested by high discharge test						
131.	(1) (3) Cap (1) (3) Eng	n the following proportion: 50%; 50% 60%; 40% acity of storage battery to convert of hydrometer test specific gravity test ine emits white smoke due to excessive lean mixture	(2) (4) chemical e	40%; 60% 45%; 55% nergy into electrical energy is tested by high discharge test						
131.	(1) (3) Cap (1) (3) Eng (1)	n the following proportion: 50%; 50% 60%; 40% acity of storage battery to convert of hydrometer test specific gravity test ine emits white smoke due to excessive lean mixture	(2) (4) chemical e	40%; 60% 45%; 55% nergy into electrical energy is tested by high discharge test						

AYT					
133.	Car	pulls to one side while braking due to			
	(1)	frame misaligned	(2)	loose rear springs	
	(3)	unequal load in car	(4)	brake grabs	
134.	Dur	ing battery charge, the electrolyte beco	mes		
	(1)	colder	(2)	thinner	
	(3)	lighter	(4)	heavier	
135.	Exh	aust valve temperature is about			
	(1)	35 °C	(2)	100 °C	
	(3)	500 °C	(4)	1000 °C	
136.	Hur	nming noise in the differential is due to	o impre	oper tooth contact between	
	(1)	drive pinion and ring gear			
	(2)	axle and side gear			
	(3)	pinion and gears			
	(4)	shafts and bearings			
137.	Wh	ich type of rear axle is generally used i	n heav	y commercial vehicles ?	
	(1)	Semi floating axle			
	(2)	Fully floating axle			
	(3)	Three quarter floating axle			
	(4)	Plain axle			
138.	An	instrument called hydrometer is used for	or		
	(1)	measuring specific gravity of acid			
	(2)	measuring viscosity of an oil			
	(3)	measuring temp of water			
	(4)	measuring charging of battery			
			20		рто

				AYT
139.	The	probable cause for hard steering c	ould be	
	(1)	low tyre pressure	(2)	bent wheel spindle
	(3)	tie rod end tight	(4)	any of the above
140.	The	tightening torque required for cyli	nder head l	bolts in motor cycles generally lie between
	(1)	5 to 10 N-m	(2)	10 to 20 N-m
	(3)	25 to 30 N-m	(4)	40 to 60 N-m
141.	Mos	st of the mopeds in India have capa	icity of	
	(1)	100 CC	(2)	50 CC
	(3)	150 CC	(4)	120 CC
142.	In w	hich of the following documents,	the details	of the vehicle tax are recorded?
	(1)	R.C. Book	(2)	T.C. Book
	(3)	Driving licence	(4)	None of the above
143.	_	_ permit is provided for seasonal	business.	
	(1)	Goods carriage	(2)	Contract carriage
	(3)	National	(4)	Temporary
144.		at is the term used for the personded to be delivered?	on to who	m goods are sent and to whom they are
	(1)	Consigner	(2)	Consignee
	(3)	Operator	(4)	None of the above
145.	Whi	ich data is mainly recorded in the "	'log book''	of the vehicle ?
	(1)	Performance of the vehicle		
	(2)	Running time for a trip		
	(3)	Loading, unloading of vehicle		
	(4)	None of the above		

146.	Whi	ich are the three colour lights used in	n traffic s	signal?					
	(1)	Red, Green and Black							
	(2) Blue, Green and Red								
	(3)	Blue, Pink and Green							
	(4)	Red, Green and Amber							
147.	Veh	icles exempted from paying motor v	ehicles'	tax are					
	(1)	fire brigade / agricultural vehicles							
	(2)	taxis							
	(3)	state transport buses							
	(4)	two wheelers							
148.	Con	Consignment note gives the details regarding							
	(1)	goods to be transported							
	(2)	number of trips made							
	(3)	purchase of the vehicle							
	(4)	tax paid							
149.	Which organisation conducts the training programmes to the administrative and supervisor staff of MSRTC?								
	(1)	C.I.R.T.	(2)	TELCO					
	(3)	V.R.D.E.	(4)	A.R.A.I.					
150.	Gros	ss vehicle weight means							
	(1)	(1) weight of the load carried by the vehicle only							
	(2)	total weight of the vehicle and load							
	(2) (3)	total weight of the vehicle and load weight of the vehicle chassis only							