

Booklet No.:

AS - 16

Aerospace Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	nswer Sheet No. :
Signature of the Candidate	<u></u>	Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

AS-16-A

AEROSPACE ENGINEERING

If 1, 1 and 5 are eigen values of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$, then the eigen values of A^{-1} are 1.

- (A) (1,-1,5)
- (B) (1,1,1/5)
- (C) (1,1,5)
 - (D) (-1,1,1/5)

2. The system of equations x+5y+3z=0, 5x+y-1=0, x+2y+p=0 has a nontrivial solution if p =

- (A) 0
- (B) 1
- (C) -1
- (D) $\frac{1}{2}$

If $f(x) = x - x^3$ satisfy Lagrange Mean Value theorem in [-2,1] at c, then **3.**

- (A) c = -1 (B) c = 1
- (C) c = 0
- (D) c = 2

If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, then $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{\partial(u, v, w)}{\partial(x, y, z)}$ 4.

- (B) 1
- (D) 3

The differential equation $y \frac{dx}{dy} + 2 = y$, y(0) = 1 has 5.

(A) no solution

(B) two solutions

(C) many solutions

(D) unique solution

The integrating factor of the differential equation $\frac{dy}{dx} + y\sin x = \frac{\sin 2x}{x}$ is 6.

- (A) $e^{\sin x}$
- (B) $e^{-\cos x}$
- (C) $e^{-\sin x}$ (D) $e^{\sin x^2}$

The steady state solution of the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions 7. u(0,t) = 5°C and u(10,t) = 20°C is

- 20x + 5(A)
- (B) 15x + 20
- (C) 10x + 5
- (D) 1.5x + 5

The steady state solution of the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, u(0,t) = 10 and u(5,t) = 15 is 8.

(A) u(x) = 15 + 10x

(B) u(x) = 10 + x

(C) u(x) = 2 + 1.5x

(D) 5 + 10x

Set - A

9.	Whic	ch of these met	hods i	s not a step me	thod t	o solve ordinar	y diff	erential equation?
	(A)	Runge Kutta		d	(B)	Euler method	l	
	(C)	Taylor's meth	od		(D)	Milne method		
10.	The	order of conver	oence	of hisection m	nethod	is		
10.		Linear	_	quadratic		cubic	(D)	None
	()		(-)	4	(-)		(-)	
11.	In re	versible adiaba	tic pro	ocess of a perfe	ect gas			
	(A)					erature are con	stant.	
	(B)			nperature is co		•		
	(C) (D)			ssure is consta		erature are not	const	ant
	(D)	Stagnation pro	cssurc	and stagnation	тетр	crature are not	COlist	ant.
12.	Entro	opy of perfect g	-					
	(A)	Stagnation Pr			(B)	Velocity chan		
	(C)	Static pressure	e chan	ige	(D)	Stagnation ter	npera	ture change
13.	For	a normal shock	with	the upstream N	Ласh r	number tends to	infin	ity, the resulting
201		nstream Mach		-				-
	(A)	1	(B)	0	(C)	0.378	(D)	Infinity
14.					ft flyin	ng in the air at a	a spee	d of 1000 kmph, at
		lard sea level to	•			–		
	(A)	1.0	(B)	0.817	(C)	0.917	(D)	1.917
15.	Air a	it a stagnation s	state o	f 3 atm and 300	0 K is	accelerated to	200 m	s. Determine the Mach
10.		ber of the flow.		i 5 atili alia 500	0 11 15	decelerated to	200 H	75. Determine the Mach
	(A)	0.596	(B)	0.317	(C)	1.0	(D)	0.0
16.			_	-	ergent	nozzle, if the	exit pr	ressure is less than the
		pressure, the n		is said to be	(D)	Over evenede	J	
	(A)	Under expand Correctly exp			(B)	Over expande Choked	a	
	(C)	Correctly exp	anueu		(D)	Choked		
17.	A co	nvergent-diver	gent n	ozzle is design	ned to	operate with e	xit Ma	ach number of 1.75. The
								e exit to throat area ratio
					ne noz	zle just chokes	is 0.4	8. What is the maximum
		pressure to che			(a)	40	(-)	
	(A)	68 atm	(B)	58 atm	(C)	48 atm	(D)	38 atm
18.	ΔΜ	ach number 2 () nozz	le is run hy a s	ettline	a chamber with	air n	naintained at 300 K. The
10.				-	-	-		Determine the settling
		nber pressure re						_
	(A)	7.82 atm	(B)	2.24 atm	(C)	1.42 atm	(D)	5.28 atm
Set -	A				3			AS
[-			

19.	Mac	coefficient of p h number as M		re at a stagnation	•	nt in the compr		e flow with fre	estream
	(A) (C)	$\frac{1}{M^2/2}$			\ /	$1 + M^2/4 + M^4/4$ $M^2/2 + M$	/40		
20.	0.03 (A)	, respectively. 1.18 and 0.27	The li		efficier (B)	al and axial force onts respectively 1.18 and -0.2	are	fficients are	1.2 and
	(C)	–1.18 and –0.	.279		(D)	0.0 and 0.0			
21.	shou	ld satisfy		ole flow has bo	th velo	ocity potential a	and st	ream function	that
	(A) (C)	Euler equatio Bernoulli equ			(B) (D)	Laplace equati Energy equati			
22.	Circ	ulation around	any cl	osed curve in a	a unifo	orm flow is			
	(A)	Unity	(B)	Finite	(C)	Zero	(D)	Infinity	
23.		source flow, the							
	(A)	Radial lines	(B)	Circles	(C)	Straight lines	(D)	Elliptical	
24.		what bodies the		_	accoun	ts for the majo	r port	ion of the tota	l drag and
	(A) (C)	Bluff body Streamlined b	oody		(B) (D)	Automobiles Pipes			
25.					,	flight. If the very aerodynamic of 19	efficie		
26.	The	semi-span of a ct ratio of wing	rectar	ngular wing of	planfo	orm area 8.4 m ²	is 3.5	m. What coul	d be the
		10.83	(B)	8.83	(C)	3.85	(D)	5.83	
27.		eestream Mach	numb	er will cause t	he obl	w with an attacl	ve	•	n increase
	(A) (C)	To move awa To remain un	•	-	(B) (D)	To move close To become no		-	
	, ,				` ′				
28.		ds. If the freest				ne pressure coefficient calculate the property of the property			•
	•	-0.375	(B)	0.375	(C)	2.67	(D)	-2.67	
Set -[A				4				AS

29.		nt is the valuee stream M			for thin sy	mmetrical	l airfoil at s	small angle of	f attack (α),
	(A)	8.8α	(B)	6.28α	(C)	0.7α	(D)	0.12 α	
30.	Circ		ne origin i					a finite ellips 4 m. What o	
	(A)				(B)	0.4 radia	ans		
	(C)	1.0 radian	S		(D)	8 radians	S		
31.	Sup	erimpose or	this flow	v a uniform	stream w	ith veloci	ty V_{∞} . The	Λ located at value of streating flow pat	am function
	(A)	Λ/2	(B)	2Λ	(C)	Zero	(D)	Λ	
32.		strength of according				x for both	the finite a	ingle and cus	ped trailing
	(A)	Unity	(B)	Infinity	(C)	Zero	(D)	Finite	
33.		O source of ermine the r						n flow of 2 m	/s.
	(A)	–0.2 m	(B)	0.2 m	(C)	1 m	(D)	2 m	
34.	Wha	nt is the valu	ie of strea	ım function	of stagna	tion the st	treamline f	or Rankine ov	val ?
	(A)	3.14	(B)	Zero	(C)	90	(D)	180	
35.		sider the no	_		•			ocations on th	ne surface
	(A)	0, 60, 90,	120 degre	ees	(B)	30, 150,	210, 330 d	egrees	
	(C)	180, 270,	360 degre	ees	(D)	0 and 18	0 degrees		
36.	For	Brayton cyc	ele, the cy	cle efficien	ιcy η depe	ends			
	(A)	Only on p	ressure ra	ntio					
	(B)	Only on n	ature of t	he gas					
	(C)	On both p	ressure ra	tio and nat	ure of the	gas			
	(D)	None of the	he above						
37.	Und	er static con	nditions i.	e., when in	take veloc	city is zero)		
	(A)	Thrust is	maximum	1	(B)	Propulsi	ve efficien	cy is maximu	m
	(C)	Thrust is	minimum		(D)	None of	the above		
Set -	A				5				AS

38. If the initial mass of the rocket=200kg, mass after rocket operation=130kg and propulsive structure=110kg, find the propellant mass fraction (ξ)							nd non		
		0.35	(B)			0.45		0.05	
39.	For 1	heat exchang	ge cycle	the decreas	e in pressi	ure ratio v	vill cause tl	ne efficier	acy to
	(A)				(B)				•
	(C)	Independe	nt of pre	ssure ratio	(D)	None of	the above		
40.	Slip	factor in the	centrifu	gal compre	essor				
	(A)	Increase w	ith numb	per of vane	S				
	(B)	Decrease v	vith num	ber of vane	es				
	(C)	Independe	nt of the	number of	vanes				
	(D)	None of th	e above						
41.		a typical subber (M _{cr}) is		-	ascade at	zero incid	ence the va	alues of th	e critical mach
	(A)	0.2 - 0.5			(B)	0.7 - 0.8	35		
	(C)	1 - 1.5			(D)	0 - 0.1			
42.	Burr	ning rate mo	difiers aı	re used in s	olid prope	ellants to			
	(A)	Accelerate	or dece	lerate the co	ombustion	rate			
	(B)	Improve th	ne elonga	ation of the	propellan	t at low te	emperatures	3	
	(C)	Provides the	he structi	ural matrix	to hold th	e propella	int together		
	(D)	None of th	e above						
43.	Stay	time (t _s) of	the prop	ellant gases	s is given l	by			
	(A)	$t_{\rm s} = \frac{V_{\rm c}}{\dot{m}v}$			(B)	$t_{\rm s} = \frac{V_{\rm c} \rho}{\dot{m}}$			
	(C)	both (A) a	nd (B)		(D)	only (A)	is correct		
	Who	· ·							
		- chamber vo		•	-	-	gas		
	ρ, ri	n-density and	d mass fl	ow rate of	the propel	lant			
44.	The	combustion	chambei	r pressure l	oss is mai	nly due to	•		
	(A)	skin frictio	n and tu	rbulence	(B)	rise in te	emperature		
	(C)	both (A) a	nd (B)		(D)	None of	the above		
45.	Cent	trifugal stres	ses in th	e blades of	turbine ar		ional to		
	(A)	N^2			(B)	N^3			
	(C)	$1/N^2$			(D)	None of	the above		
	whe	ere N is the r	otational	speed.					
Set -	A				6				AS

46.	Frou	de's efficiency (η_p) is the ratio of			
	(A)		m of 1	that energy and unused kinetic energy of t	he
	(B)	jet. Useful kinetic energy for propulsi	on to 1	the rate of energy supplied in the fuel.	
	(C)	Useful work done in overcoming of			
	(D)	input energy to the engine output.	nag u	o the energy in the fuel supplied.	
	(D)	input energy to the engine output.			
47.	Whi	ch of the following thrust relation is	true '	?	
	(A)	$F=C_F A_t P$	(B)	$F=C_F \stackrel{\bullet}{m} C^*$	
	(C)	Both (A) and (B)	(D)	None of the above	
		optimum thrust coefficient			
		characteristic velocity			
		Chamber pressure Throat area			
	$\Lambda_{\mathfrak{t}}$ –	Tilloat area			
48.	The	typical values of critical pressure ra	atio fo	or nozzle is in the range of	
	(A)	0.12 - 0.40	(B)	0.53 - 0.57	
	(C)	0.80 - 0.88	(D)	0.6 - 0.8	
49.	Whi	ch of the following statements is tru	e?		
	(A)	Under expanded nozzle – exit area	is to	o small for an optimum area ratio.	
	(B)	Over expanded nozzle – exit area	is too	small for an optimum area ratio.	
	(C)	Under expanded nozzle – exit area	is to	o large for an optimum expansion.	
	(D)	None of the above			
50.	Wha	t is the effect of divergence angle ir	conic	cal nozzles?	
	(A)	Small angle gives high specific im	pulse		
	(B)	Large angle gives better performan	nce		
	(C)	Both (A) and (B)			
	(D)	None of the above			
51.	The	velocity correction factor (ζ_v) is rela	ated to	o energy conversion efficiency (e) by	
	(A)	e^2 (B) 1/e	(C)	\sqrt{e} (D) e^3	
52.	The	value of discharge correction factor	((%) is	s usually larger than 1 because.	
	(A)	molecular weight of the gases incr			
	(B)	•		the temperature and thereby increasing th	ie
	(-)	density.	8		
	(C)	both (A) and (B)			
	(D)	Only (B)			
Set -	A		7		AS

	(A)	$\dot{\mathbf{m}}_0 = \frac{r\dot{m}}{(r+1)}$ (oxidizer				
		(r+1)	:)	(B)	$\dot{\mathbf{m}}_{\mathrm{f}} = \frac{r\dot{m}}{(r+1)}$ (fuel)	
	(C)	both (A) and (B)			None of the above	
54.	The	specific impulse of a	•	-		
	(A)	Directly proportion			•	
	(B)	Inversely proportion				
	(C)		onal to molecula	ar weig	ght.	
	(D)	None of the above				
55.	Wha	t are the desirable pr	operties of liqu	id pro	pellants?	
	(A)	Low freezing point	and specific gr	ravity.		
	(B)	Low freezing point	and high speci	fic gra	wity.	
		High freezing poin	t and high spec	ific gr	avity.	
	(D)	Low boiling point.				
56.	The by,	relation among veloc	city(ζ_v), dischar	·ge (ζ _d) and thrust (ζ_F) corr	rection factors is given
		$\zeta_{\rm v} = \zeta_{\rm F} \zeta_{\rm d}$ (B)	$\zeta_F\!=\zeta_v\zeta_d$	(C)	$\zeta_d = \zeta_F \zeta_v$ (D)	None of the above
57.	The	burning rate of comp	oosite propellan	ıts can	be increased by,	
		Decreasing the oxid			3 /	
		Increasing oxidizer	-			
		Both (A) and (B)				
	(D)	None of the above				
58.	In th	e burning rate law g	iven by r=ap ⁿ ,	the va	lue of combustion in	ndex(n)
	(A)	Depends on initial	•			
	(B)	Describes the influ	ence of chambe	er pres	sure on the burning	rate
	(C)	Both (A) and (B)			_	
	(D)	None of the above				
59.	For a	an end burning grain	the web thickn	ess is		
	(A)	Half of the length of		(B)	Equal to the length	n of the grain
	(C)	Cannot be related t	_	(D)	None of the above	•
60.		time interval betwee			10% pressure point	s on the pressure-time
	(A)	Burning time		(B)	Action time	
	(C)	Deflagration time		(D)	Delay time	

61.		biharmonic ed ry of elasticity	-		the a	absence of boo	dyforc	es, for 2	2-D problem	n in
	(A)	by combining	equilibr	ium equation	n and	compatibility c	onditi	on.		
	(B)	by combining	g equilibr	ium equation	n, stre	ess-strain relatio	on and	compati	bility condi	tion.
	(C)					compatibility c				
	(D)	by combining	g equilibr	ium equation	n and	stress-strain rel	lation.			
62.	value (A)		he stress 1/4)		fy the (B)	$\sigma_{xx} = a x^2 y^2$ equilibrium eq (-3/4) and (-1/4) (1/3) and (1/4)	quation 1/2)		$\tau_{xy} = x \ y^3.$.The
63.	The	state of nure sh	near stress	s is defined l	hy the	stress function	1			
05.		$\emptyset = c x y$	icai stresi	3 13 defined	•	$\emptyset = c x^2 y$	•			
	` '	$\emptyset = c \times y^2$			` ′	$\emptyset = c x^2 y^2$				
64.		value of c for t $c_{xx} = c(x^2 + y^2)$		•		to be possible of	one is			
	(A)	1	(B) 2		(C)	4		(D) (1/2	2)	
65.		e principal stre	ss values		What	exes are σ_{xx} = is the value of (C) 25 MPa			stress?	One
66.						radius of curand E = 200 GF				
	(A)	5000 N-m			(B)	2000 N-m				
	(C)	4000 N-m			(D)	6000 N				
67.	Poin	t of contra flex	ure is							
	(A)	at which shea	r force is	maximum.						
	(B)	at shear force	and bend	ding momen	t are	maximum.				
	(C)	at which shea	r force a	nd bending r	nome	nt are zero.				
	(D)	at which bend	ling mon	nent is zero.						
68.	a she	ear force P at i	ts midpo	int. In the so	econd	mply supported case the length pending stress of	h of th	e beam	is doubled	with
	(A)	4	(B) 1		(C)	2	(D)	3		
Set -	A				9					AS

69.	canti		subjec	ted moment M				e end. Another identical e at the tip of the beams
	(A)	2 L	(B)	L	(C)	L/2	(D)	L^2
70.				igidity GJ is fix The twist at the			ee at t	he other end. A torque T
	(A)	TL/(2GJ)	(B)	TL/(GJ)	(C)	2TL/(GJ)	(D)	TL/(4GJ)
71.						onal rigidity G aximum tensile		bjected to torque <i>T</i> at its is
	(A)	τ/2	(B)	4 τ	(C)	τ	(D)	3 τ
72.				and diameter or end. The maxin			It is s	ubjected to a torque T at
	(A)	$16\mathrm{T}/(\pi\mathrm{d}^3)$	(B)	$32T/(\pi d^3)$	(C)	$8T/(\pi d^3)$	(D)	$12T/(\pi d^3)$
73.	diam shear	eter of the shar r stress of the s	aft is c	doubled with t case to that in	orque the fi	remaining san	ne. Th	Γ. In the second case the e ratio of the maximum
	(A)	2	(B)	1/2	(C)	1/4	(D)	1/8
74.		on is in x-y pla			_	x-axis. During	g buck	depth 20 cm and cross ling the bending will be
75.		_		column with			N. If t	he end condition of the
	(A)	16000 N	(B)	4000 N	(C)	32000 N	(D)	500 N
76.	anotl		ovided	l at the midpoi		•		l compressive load P. If is zero at the midpoint,
	(A)	π^2 EI/ 4L ²	(B)	$4 \pi^2 EI/L^2$	(C)	$\pi^2 \text{EI/2L}^2$	(D)	$\pi^2 \text{EI/L}^2$
77.		cross section lerness ratio is	of a	column is cir	rcle o	f diameter 10	0 mm	and length 3 m. The
	(A)	100	(B)	120	(C)	240	(D)	300
78.	yield							$\tau_{xy} = 4c$ (in MPa). The rding to maximum shear
	(A)	120	(B)	150	(C)	60	(D)	90
Set -	A				10			AS

79.	An idealized thin walled channel section, with area lumped at discrete locations, is subjected to vertical shear force applied at the shear center. The skin is ineffective in resisting the load. The shear flow							
	(A)	varies linearly	betw	een the lumpe	d areas	S		
	(B)	varies parabo	lically	between the l	umped	areas		
	(C)	is constant be	tween	lumped areas				
	(D)	is zero in the	flange	s of the channe	el sect	ion and constar	nt in tl	he web section
80.				_				h 20 cm is subjected to a oduced by the shear flow
	(A)	3000 N-cm	(B)	4000 N-cm	(C)	8000 N-cm	(D)	6000 N-cm
81.	sprin		ind m	ass is reduced	•			mass. The stiffness of the frequency in the second
	(A)	1	(B)	4	(C)	1/2	(D)	2
82.		ral frequency.	The da	imping ratio is	-	•		is found to be 90% of its
	(A)	$(0.3)^{0.5}$	(B)	$(0.25)^{0.5}$	(C)	$(0.19)^{0.5}$	(D)	$(0.4)^{0.5}$
83.	frequ	ency of vibrati	ion is	8 rad/sec. The	dampi	ng constant is		atio is 0.25. The natural
	(A)	0.2 N-s/m	(B)	2 N-s/m	(C)	4 N-s/m	(D)	3 N-s/m
84.	The	number of degr	ees of	f freedom for a	simpl	y supported be	am is	
	(A)	4	(B)	2	(C)	infinite	(D)	10
85.	The	rigid body mov	emen	t is observed in	n the c	ase of vibration	n of a	beam with
	(A)	both ends fixe						
	(B)	both ends sim						
	(C) (D)	one end fixed Both ends are		ther end hinge	d			
0.4	` ′							
86.		e exists a parti		-	ving a	bout which the	e mon	nents are independent of
	(A)	Centre of pres	ssure		(B)	Aerodynamic	cente	er
	(C)	Centre of grav	vity		(D)	Stagnation po	int	
87.		airplane in the	steady	y, equilibrium	flight	at its trim ang	gle of	attack has zero pitching
	(A)	Centre of grav	vity		(B)	Centre of pres	ssure	
	(C)	Aerodynamic	s cent	er	(D)	Quarter chord	l point	t
Set -	A				11			AS

88.	The	contribution of	f wing	with positive	e cambei	towards lon	gitudin	al static sta	ability is
	(A)	Stable			(B)	Destabilizin	ıg		
	(C)	Negligible			(D)	None			
89.	For 1	longitudinal sta	atic sta	bility, the ce	ntre of g	ravity of an a	airplane	must alwa	ays be
	(A)	ahead of neu	-						
	(B)	behind neutra	-						
	(C)	on the neutra	-						
	(D)	positioned at	10% (of chord leng	th of the	wing			
90.		airplane trim a	ingle o			•	ecting		
	(A)	Rudder	(B)	Aileron	(C)	Elevator	(D)	Flap	
91.	The rudd		trim c	an be made z	zero by i	ncorporating	· 	on either	the elevator or
	(A)	flap	(B)	trim tab	(C)	slat	(D)	aileron	
92.	The	difference bety	ween tl	he neutral po	int and t	he actual cen	tre of g	ravity posi	tion is called
	(A)	Static margin	1		(B)	Chord			
	(C)	Quarter chor	d		(D)	Sideslip			
93.	The	yawing mome	nt crea	ted due to ra	te of roll	is called			
	(A)	Weathercock	effect		(B)	Adverse yav	W		
	(C)	Dihedral			(D)	Cross effect			
94.		rudder lock c		prevented by	y adding	g a small ex	tension	at the be	ginning of the
	(A)	Dorsal fin			(B)	Rudder fin			
	(C)	Rudder delta	ı		(D)	Rudder tip			
95.	Whe have	•	ne win	g are at high	er level	than the root	of the	wing, the	wing is said to
	(A)	Twist			(B)	Dihedral			
	(C)	Anhedral			(D)	Taper			
96.	The	yawing mome	nt crea	ted due to sid	deslip is	called			
	(A)	Rolling			(B)	Adverse yav	W		
	(C)	Weathercock	effect		(D)	Pullup			
97.	The	rolling momer	nt creat	ed due to sid	eslip is	called			
	(A)	Dihedral effe	ect		(B)	Adverse Ya	.W		
	(C)	Weathercock	effect		(D)	Pulldown			
Set -	A				12				AS

98.		unpowered gliding flight, the g force 'D' by	angle 'θ'	is determined in terms of Lift force 'L' and
	_	Tan $\theta = L/D$	(B)	Tan $\theta = D/L$
	(C)		(D)	
99.	The	absolute ceiling of transport ai	rcraft is de	fined as the altitude
	(A)	Where maximum rate of clim	b is 100ft/	min
	(B)	Above service ceiling		
	(C)	Where maximum rate of clim	nb is infinit	y
	(D)	Where maximum rate of clim	nb is zero	
100.	The	stall speed of a given airplane	at a given a	altitude is
	(A)	Proportional to Maximum life	t coefficien	t
	(B)	Inversely proportional to Ma	ximum lift	coefficient
	(C)	Proportional to lift coefficien	t	
	(D)	Inversely proportional to lift	coefficient	
101.		sider for jet propelled aircraft b angle θ_{max} will occur when the		ust is constant with velocity. The maximum
	(A)	Lift to drag ratio is maximum	n (B)	Lift to drag ratio is minimum
	(C)	Lift to drag ratio is one	(D)	Thrust is maximum
102.	In th		ht, the val	ue of minimum thrust requiredwith
	(A)	changes	(B)	increases
	(C)	decreases	(D)	remains constant
103.	Iden	tify the TRUE statement from	the followi	ng choices.
	(A)	Wing dihedral and high wing	reduce rol	l stability.
	(B)	Wing dihedral increases ro stability.	ll stability	and high wing configuration reduces roll
	(C)	Wing dihedral and high wing	increase re	oll stability.
	(D)	Wing dihedral and low wing		•
104.		•		on between velocity corresponding to power sponding to thrust required minimum ($V_{tr\ min}$)
	(A)	$V_{pr\;min}=0.76\;V_{tr\;min}$	(B)	$V_{pr \ min} = V_{tr \ min}$
	(C)	$V_{tr\;min}=0.76\;V_{pr\;min}$	(D)	$V_{pr\;min} = 1.32\;V_{tr\;min}$
Set -	A		13	AS

105.		For critically damped single degree of freedom spring-mass-damper system with a lamping constant of 3 Ns/m and spring constant k of 9 N/m, then mass m is					
	(A)	0.25 kg	(B)	1 kg			
	(C)	3 kg	(D)	9 kg			
106.	avail	aircraft of mass 2000 kg in steady level flight at a constant speed of 100 m/s has ilable excess power of 2.0×10^6 W. The steady rate of climb (approximately) it can in at that speed is					
	(A)	100 m/s	(B)	150 m/s			
	(C)	200 m/s	(D)	10 m/s			
107.	The purpose of winglets used on wings is to						
	(A)	Minimize induced drag	(B)	Minimize wave drag			
	(C)	Minimize skin friction drag	(D)	Minimize profile drag			
108.	Identify the TRUE condition for smallest possible turn radius and largest possible turn rate in a level turn flight.						
	(A)	A) Highest possible load factor and lowest possible velocity.					
	(B)	Lowest possible load factor and highest possible velocity.					
	(C)	Highest possible load factor and highest possible velocity.					
	(D)	D) Lowest possible load factor and lowest possible velocity.					
109.	the li	Consider a straight wing of aspect ratio with an NACA 2412 airfoil. For low-speed flow, the lift coefficient at an angle of attack of 6 deg is 0.648. Assume the span efficiency factor is 0.95. Calculate the induced drag coefficient.					
	(A)	0.234	(B)	0.423			
	(C)	0.0234	(D)	0.0423			
110.	The it	propeller is feathered when an engin	e fail	ure occurs in flight. This is preferred because			
	(A)	minimizes drag	(B)	maximizes lift			
	(C)	maximizes drag	(D)	minimizes lift			
111.	For a NACA 2412 airfoil of chord 'c', identify the correct combination from given choice						
	(A)	Camber is 0.02c located at 0.4c fro	m the	leading edge.			
	(B)	Camber is 0.2c located at 0.04c fro	m the	leading edge.			
	(C)	Camber is 0.04c located at 0.2c fro	m the	leading edge.			
	(D)	Camber is 0.4c located at 0.02c fro	m the	leading edge.			
Set -[A		14	AS			

	(A) to increase the drag divergence Mach number(B) to decrease the drag divergence Mach number						
	(C)	to increase the lift					
	(D)	to increase the strength					
113.	What are the necessary criteria for longitudinal balance and static stability? $C_{M,cg}$ is coefficient of pitching moment about center of gravity and α_a is absolute angle of attack						
	(A) $C_{M,cg}$ at zero lift must be positive, $\partial C_{M,cg}/\partial \alpha_a$ must be negative.						
	(B)	· · · · · · · · · · · · · · · · · · ·					
	(C)	$C_{M,cg}$ at zero lift must be positive	$\partial C_{M,c}$	$g/\partial \alpha_a$ must be positive.			
	(D)						
114.	An airplane requires longer ground roll to get off the ground during						
	(A)	summer	(B)	winter			
	(C)	cross-winds	(D)	rainy day			
115.	The amount of time that an airplane can stay in the air on one load of fuel is called						
	(A)	Range	(B)	Endurance			
	(C)	Load factor	(D)	Time to climb			
116.	In an elliptical orbit at which point the radial component of velocity is zero.						
	(A)	Perigee	(B)	3 3			
	(C)	Apogee	(D)	both perigee and apogee			
117.	Which of the following is always conserved in an orbit?						
	(A)	Kinetic Energy	(B)	Potential Energy			
	(C)	Potential and Kinetic Energy	(D)	Angular Velocity			
118.	The ratio of escape velocity to orbital velocity at the point in a circular orbit is equal to						
		1.414		0.707			
	(C)	1	(D)	2			
119.		total energy of an orbit is equal to					
	(A)	Circular Orbit	(B)	Hyperbolic Orbit			
	(C)	Elliptic Orbit	(D)	Parabolic Orbit			
120.		The ratio of change in velocity required to change the orbital plane inclination to 90 degrees without changing velocity to the orbital velocity in circular orbit is equal to					
	(A)	1.414	(B)	1			
	(C)	2	(D)	0.707			
с., Г	_		15	_	A C		
Set - [Α		15		AS		

112. The main function of swept back wings of subsonic aircraft is

SPACE FOR ROUGH WORK

Aerospace Engineering (AS) SET-A

Question No	Answer	Question No	Answer
1	В	61	В
2	В	62	Α
3	Α	63	Α
4	Α	64	Α
5	D	65	В
6	В	66	С
7	D	67	D
8	В	68	С
9	С	69	С
10	Α	70	Α
11	Α	71	С
12	Α	72	D
13	С	73	D
14	В	74	Α
15	Α	75	D
16	В	76	В
17	В	77	В
18	Α	78	С
19	В	79	С
20	Α	80	D
21	В	81	D
22	С	82	С
23	В	83	С
24	С	84	С
25	С	85	D
26	D	86	В
27	В	87	Α
28	Α	88	В
29	Α	89	Α
30	Α	90	С
31	Α	91	В
32	С	92	Α
33	Α	93	В
34	В	94	Α
35	В	95	В
36	С	96	С
37	Α	97	Α
38	В	98	Α
39	Α	99	D
40	Α	100	В
41	В	101	Α
42	Α	102	D

C	103	С
C	104	Α
A	105	Α
A	106	Α
C	107	Α
3	108	Α
Ą	109	С
Ą	110	Α
C	111	Α
C	112	Α
A	113	Α
C	114	Α
3	115	В
3	116	D
C	117	С
3	118	Α
3	119	D
3	120	Α
		104 105 106 107 108 109 110 111 112 113 114 115 18 116 117 118 119