Booklet No. :

Bio Technology

Duration of Test : 2 Hours

Max. Marks: 120

Hall Ticket No.

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

BIOTECHNOLOGY (BT)

1. If the system of equations AX = 0 has a unique solution if the square matrix A is

- (A) singular (B) non-singular
- (C) unit matrix (D) such that the det(A) is 1.

2. The product of the eigen values of the square matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ is equal to

(A) -36 (B) -18 (C) 36 (D) 18

3. The function $f(x, y) = xy + a^3(\frac{1}{x} + \frac{1}{y})$ is minimum at the point

(A) (0,a) (B) (a,a) (C) (a,0) (D) (0,0)

4. If
$$x = u(1-v)$$
 and $y = uv$ then $\frac{\partial(x, y)}{\partial(u, v)} =$
(A) 1 (B) $u + v$ (C) u (D) $1-u$

5. Three persons A, B and C supply 40%, 30% and 30% of the total output. Out of them 2% from A, 1% from B and 2% from C are defective. If an item is selected at random, then the probability of defective is

(A) 0.08 (B) 0.008 (C) 0.01 (D) 0.017

6. For a Poisson distribution 2P(X = 0) = P(X = 1), then the probability density is

(A)
$$\frac{2^{x}e^{-2}}{x!}$$
 (B) $\frac{3^{x}e^{-3}}{x!}$ (C) e^{-2x} (D) $\frac{5^{x}e^{-5x}}{x!}$

7. The degree of the differential equation $(\frac{d^2 y}{dx^2})^3 + x(\frac{dy}{dx})^5 x^2 y = 0$ is (A) 0 (B) 2 (C) 3 (D) 5

Set - A

8.	The solution	of the equation	xe^{-x^2}	$dx + \sin y dy = 0$	is
----	--------------	-----------------	-------------	-----------------------	----

(A) $e^{-x} + \sin x = C$ (B) $\frac{e^{-x^2}}{2} + \cos y = C$ (C) $xe^{-x} + \sin x = C$ (D) $\int e^{-x^2} dx + \sin y = C$

9. The condition for convergence of Newton-Raphson method to find a real root of f(x) = 0 is

(A) $|f'(x)| \le 1$ (B) $|f(x)f''(x)| \le |f'(x)|$

(C)
$$|f(x)f(x)| \le |f(x)|^2$$
 (D) $|f'(x)| > 0$

- 10. If $y' = x + y^2$ and y(0) = 1 then y(1.1) by Euler's method is(A) 1.1(B) 0.1(C) 1.11(D) 1.011
- 11. Endogenous antigens are presented on to the cell surface along with(A) MHC-II(B) MHC-I(C) Fc receptor(D) complement receptor
- 12. The rate-limiting enzyme in glycolysis is
 (A) Phosphoglumutase
 (B) Phospho hexose isomerase
 (C) Hexokinase
 (D) Phospho glycerate mutase
- 13. The number of nucleotide pairs in the genome of *E.coli* is
 (A) 5,639,221 (B) 4,639,221 (C) 2,639,221 (D) 1,639,221
- 14. Which of the following organelle is present only in animal cells and not in plant cells ?(A) Chloroplasts (B) Vacuoles (C) Microtubules (D) Plasmalemma
- **15.** Antibody dependent cell mediated immunity occurs by binding of cell surface receptors to
 - (A) Complement (B) TCR (C) Fc region (D) MHC-II
- 16. Which of the following is not a genetic transformation technique ?(A) Electroporation (B) Biolistic gene gun
 - (C) Laser microbeams (D) PAGE
- Set A 3 BT

- 17. Interleukins are a set of proteins secreted by immune cells which are classed under (A) Antigens (B) Antibodies (C) Complement (D) Cytokines
- **18.** Stability of DNA is achieved by DNA bases being held together by
 - (A) Van der Waals forces
 - (B) Hydrogen bonds
 - (C) Covalent bonds
 - (D) Disulphide bonds
- **19.** The term originally applied to cells of a single type, isolated and allowed to reproduce to create a population of identical cells is called

(A) Clone (B) Population (C) Colony (D) Family

- **20.** Generating and propagating a recombinant DNA molecule requires which of the following set of enzymes ?
 - (A) Polymerases and transferases
 - (B) Restriction endonucleases and DNA ligases
 - (C) Transcriptase and Exonuclease
 - (D) Kinases and Phosphatases
- 21. The nucleotide analogue used in DNA sequencing by chain termination method is
 - (A) 1', 3'-dideoxy nucleoside triphosphate
 - (B) 2', 3'-dideoxy nucleoside triphosphate
 - (C) 2', 4'-dideoxy nucleoside triphosphate
 - (D) 2', 5'-dideoxy nucleoside triphosphate

22. Human genome sequencing project involved the construction of genomic library in

- (A) Bacterial artificial chromosome (B) pBR322
- (C) bacteriophage (D) pcDNA3.1
- **23.** EcoRI recognition sequence is

(A)	GGATCC	(B)	G A T A T C
(C)	GGCC	(D)	GAATTC

24. Adjuvants are used to

- (A) prolong the persistence of antigen (B) cross link the antigen
- (C) increase the size of antigen

Set - A

(D) avoid inflammation

25.	An RNA primer is synthesized during the replication process in bacteria by								
	(A)	RNaseH			(B)	primase			
	(C)	DNA polyme	rase-I		(D)	DNA polymerase-II			
26.	Whi	ch one of the fo	ollowi	ng modificatio	ns is c	common to both protein and DNA?			
	(A)	Phosphorylat	ion		(B)	Nitrosylation			
	(C)	Methylation			(D)	Ubiquitination			
27.	Bovi	ine growth horn	none	produced artifi	cially	y using recombinant DNA technology is			
	(A)	rBST	(B)	cDNA	(C)	pGEM (D) pBR			
28.	Mult trans	tidrug Resistar	nce P	rotein (MDR)	belo	ongs to which of the following class of			
	(A)	V-Type ATPa	ases		(B)	P-type ATPases			
	(C)	ABC transpor	rters		(D)	Ionic channels			
29.	0. In 1982 the first synthetic insulin, came on the market and it was genetically engineered by Genentech and marketed by Eli Lilly. It was named as								
	(A)	Rh-Insulin	(B)	Humulin	(C)	Basalog (D) Insugen			
30.	Repe	eating units of	glucur	onic acid $\alpha(1,$	4) glu	ucosamine are found in			
	(A)	Chondroitin s	ulpha	te	(B)	Hyaluronic acid			
	(C)	Heparin			(D)) Keratin			
31.	Gap	iunctions betw	een ai	nimal cell type	s are a	also called			
	(A)	Nexus	(B)	Ephapse	(C)	Plasmodesmata (D) Connexons			
27	1 ====	trovinus is a tur	a of t	vinus that conta	inc				
34.		DNA	(\mathbf{P})		(\mathbf{C})	\mathbf{P}_{rotoin} (D) \mathbf{r} DNA			
	(A)	DNA	(D)	KINA	(C)	PIOLEIII (D) IDINA			
33.	Gold	len Rice-2 was	create	ed by introduci	ng ph	nytoene synthase from			
	(A)	Daffodils	(B)	Maize	(C)	Carrot (D) Amaranthus			
34.	Reco infla	ombinant hum ammatory prop	an an erties	tithrombin (A that has been r	Tryn) nanufa) is a protein with anticoagulant and ant factured from milk of transgenic :	i-		
	(A)	Cow	(B)	Goat	(C)	Buffalo (D) Donkey			
Set -	A				5	BT	I		

35.	The term biotechnology was coined in 1917 by a Hungarian inventor named								
	(A)	Karl Ereky			(B)	Phoebus Levene			
	(C)	Harry H. Lau	ghlin		(D)	Jonas Salk			
36.	Elec	troporation is a	techr	nique used with	1				
	(A)	Calli	(B)	Ovules	(C)	Pollen	(D)	Cell suspensions	
37.	If the apati	ermally denatu ite column the	red D fractic	NA is allowed on that will be e	to re-	associate and then passed through a hydroxyl last with salt is			
	(A)	ssDNA			(B)	ds DNA			
	(C)	Single copy I	DNA		(D)	Free nucleotie	des		
38.	In th attac	ne present day whed to	dye t	erminator syst	ems o	f DNA sequer	ncing	the fluorescent dye	es are
	(A)	The primers	(B)	ddNTPs	(C)	dNTPs	(D)	The templates	
39. Large scale production of monoclonal antibodies involving					odies is the res	sult of	f mass culture tech	nique	
	(A)	Hybridoma C	lells		(B)	Animal and F	Plant C	Cell Hybrids	
	(C) Recombinant E. coli (D)				(D)	Animal and E	Bacter	ial Cell Hybrids	
40.	The	least conserved	l histo	one is					
	(A)	H4	(B)	H2a	(C)	H3	(D)	H1	
41.	The	packaging ratio	o obta	ined in the seco	ond lev	vel of nucleoso	me or	ganization is	
	(A)	7	(B)	3	(C)	40	(D)	100	
42.	The	enzyme that is	locate	ed in the nucleo	olus :				
	(A)	RNA Pol I	(B)	RNA Pol II	(C)	RNA Pol III	(D)	DNA polymerase	
43.	The	subunit of <i>E. c</i>	oli RN	VA polymerase	that is	s involved in p	romot	er recognition is	
	(A)	Alpha subuni	t (B)	Sigma subuni	it (C)	Beta subunit	(D)	Delta subunit	
44.	The	only RNA hav	ing a 1	oolyA tail is					
	(A)	Hn RNA	(B)	rRNA	(C)	mRNA	(D)	tRNA	
Set -	A				6				BT

45.	In la	c operon IPTG	is						
	(A)	Repressor	(B)	Corepressor	(C)	Inducer	(D)	Aporepressor	
46.	Alu	family of seque	ences	belongs to					
	(A)	LINES	(B)	MITES	(C)	SINES	(D)	LTRs	
47.	In th	e Sanger metho	od of I	DNA sequenci	ng the	radioactive lab	eling	is done to	
	(A)	3'-end of the	prime	r	(B)	5'-end of the primer			
	(C)	Internal label	ing of	the primer	(D)	The templates	8		
48.	The	enzyme that co	ontains	s Molybdenum	in its	active site is			
	(A)	Ascorbate ox	idase		(B)	Nitrate reduct	tase		
	(C)	Glutamate de	hydro	genase	(D)	Nitrogenase			
49.	Retroelements transpose through the following intermediate :								
	(A)	RNA	(B)	Protein	(C)	DNA	(D)	Retroviruses	
50.	The	smallest unit o	f DNA	A capable of co	ding f	for the synthesis	s of a j	polypeptide is	
	(A)	Operon	(B)	Amplicon	(C)	Cistron	(D)	Replicon	
51.	The	plasmid presen	t in A	grobacterium 1	hizogo	<i>enes</i> is			
	(A)	Ti	(B)	Ri	(C)	pBR322	(D)	pUC	
52.	Glyc	cosylation of ne	ewly s	ynthesized pro	teins l	argely takes pla	ace in		
	(A)	Nucleus			(B)	Endoplasmic	reticu	lum	
	(C)	Golgi bodies			(D)	Cytosol			
53.	The	anticodon in tF	RNA t	hat correspond	s to th	e codon UCA i	n mR	NA is	
	(A)	UGA	(B)	TGA	(C)	GCU	(D)	AGU	
54.	The	action of Dam	methy	alase in GATC	seque	nce results in			
	(A)	^m GATC	(B)	G ^m ATC	(C)	GAT ^m C	(D)	$G^{m}AT^{m}C$	
Set -	A				7				

55.	The	inactive form o	f G p	rotein gets activ	vated	by binding to			
	(A)	GTP	(B)	GDP	(C)	ATP	(D)	cAMP	
56.	Mos	t common caus	e for	PTGS involves	meth	vlation of			
201	(A)	CG islands	c 101 .		(B)	Coding seque	ences		
	(\mathbf{C})	Promoter sea	lence	s	(\mathbf{D})	Terminator	nees		
	(0)	r tomoter seq	uenee		(D)	Terminator			
57.	The	mutation that o	ccurs	during the dear	minat	ion of Cytosine	to Ui	cacil is	
	(A)	Transition	(B)	Transversion	(C)	Deletion	(D)	Frame-shift	
58.	The	sulfur containir	ng am	ino acid that is	NOT	found in prote	ins :		
	(A)	Methionine	(B)	Homocystein	e (C)	Cysteine	(D)	Cystine	
59.	The	first evidence o	of ds F	RNA leading to	gene	silencing was f	from t	he work on	
	(A)	C. elegans	(B)	Petunia	(C)	Arabidopsis	(D)	Mouse	
60.	In T	vne II restrictio	n enz	vmes Restricti	on an	d Methylation a	are		
	(A)	Simultaneous		<i>y</i> mes, reserver	(B)	Mutually exc	lusive		
	(C)	Separate react	tions		(D)	Stepwise			
61.	The	site of binding	of RN	IA polymerase	on D	NA can be char	acteri	zed by the method of	of
	(A)	Fingerprinting	3		(B)	Foot printing			
	(C)	Differential st	aining	g	(D)	FISH			
62.	The	co-enzyme that	form	s a Schiff base	linka	ge with lysine p	oresen	t in the active site o	of a
	tran	saminase during	g tran	samination read	ctions	is			
	(A)	TPP			(B)	Pyridoxal pho	osphat	e	
	(C)	Biotin			(D)	NAD			
63.	Hype	ersensitivity rea	action	s are mediated	by				
	(A)	IgG	(B)	IgD	(C)	IgE	(D)	IgM	
	т 1	· · · · · · · · · · · · · · · · · · ·							
64.	J cha	ain is present in	(\mathbf{D})	Inc and InD	(\mathbf{C})	Ich and IcC	(\mathbf{D})	IaM and IaD	
	(A)	igA and IgM	(B)	igo and IgD	(C)	igA and IgG	(D)	igivi and igD	
Set -	A				8				BT

65.	Who among the following elucidated the basic structure of the antibody molecule and shared the nobel prize in 1972 ?								
	(A) (C)	Thomas and M Richet and Bo	Murra order	у	(B) (D)	Porter and Ed Lansteiner an	lelmar d The	ı iler	
66.	Dihy	brid test cross	ratio i	s					
	(A)	9:3:3:1	(B)	1:1:1:1	(C)	1:6:6:1	(D)	1:1	
67.	Signa trans	al Transduction membrane rece	on is eptors	usually initia in which way	ted by ?	y modification	n of	cytoplasmic por	tion of
	(A)	Lysine phosp	horyla	ation	(B)	Tyrosine phosphorylation			
	(C)	Alanine phos	phory	lation	(D)	Isoleucine ph	ospho	rylation	
68.	Antil	body class swit	ching	is mediated by	7				
	(A)	GM-CSF	(B)	RANTES	(C)	Interleukins	(D)	G-CSF	
69.	The l	F ₂ ratio in addi	tive fa	actors in gene in	nteract	tion is			
	(A)	12:3:1	(B)	9:6:1	(C)	15:1	(D)	13:3	
70.	The One-Gene-One-Enzyme hypothesis was developed based on genetic studies in								
	(A)	E. coli	(B)	Neurospora	(C)	Drosophila	(D)	Pisum	
71.	Soma	atic hypermuta	tion o	f heavy and lig	ht cha	in variable reg	ion ge	enes results in	
	(A)	Antigen diver	sity		(B)	Complement	divers	sity	
	(C)	Antibody dive	ersity		(D)	Macrophage diversity			
72.	One of th	group of effect te target are	tor ce	lls that have di	rect cy	totoxic activit	y agai	inst foreign cells	by lysis
	(A)	Natural killer	cells		(B)	Antibodies			
	(C)	Cytokines			(D)	Complement	protei	ns	
73.	Resp	iratory cycle th	nat res	sults in CO ₂ rel	ease is	5			
	(A)	(A) Glycolysis				HMP shunt			
	(C)	TCA cycle			(D)	Electron Tran	nsport	Chain	
Set -	A				9				BT

74.	ATP	synthase complex is present in wh	ich pat	thway ?						
	(A)	Glycolysis	(B)	HMP shunt						
	(C)	TCA cycle	(D)	Electron Transport Chain						
75.	Forn	nation of C-C, C-S, C-O and C-N b	onds is	s catalyzed by						
	(A)	Hydrolases (B) Oxidases	(C)	Ligases (D) Isomerases						
76.	Acti	vation energy in a biochemical reac	tion ca	an be lowered most efficiently by						
	(A)	Enzyme catalysis	(B)	higher temperature						
	(C)	Increasing substrate	(D)	Optimum pH						
77.	K _m i	s equal to								
	(A)	Highest substrate conc.	(B)	Lowest substrate conc.						
	(C)	Zero substrate conc.	(D)	Substrate conc. at half of V_{max} .						
78.	Glucose transport across intestinal epithelial cells occurs through which of the following types of transport ?									
	(A)	Uniporters	(B)	Symporters						
	(C)	Ion gated channels	(D)	Antiporters						
79.	DNA	A replication takes place only at wh	ich spe	ecific phase of the cell cycle ?						
	(A)	M (B) G ₁	(C)	S (D) G ₂						
80.	Whie	ch of the following signaling molec	ules c	an be classed as a secondary messenger ?						
	(A)	Neurotransmitter	(B)	Hormone						
	(C)	Cyclic-AMP	(D)	Growth factor						
81.	Whe first,	n any substrate can bind first to the reaction is called	he enz	yme and any product can leave the reaction						
	(A)	Ordered sequential	(B)	Random sequential						
	(C)	Double displacement	(D)	Steady state						
82.	Cont	formation of a hemoglobin molecul	e is an	example of a						
	(A)	Primary structure	(B)	Secondary structure						
	(C)	Tertiary structure	(D)	Quarternary structure						
Set -	A		10	BT						

- 83. Human genome contains about how many base pairs ?
 - (A) 2 billion bp (B) 3 billion bp (C) 4 billion bp (D) 5 billion bp
- 84. Entering a set of IUPAC codes into BLAST, helps to
 - (A) find out whether a certain protein has any role in human disease.
 - (B) search for the genes that are located on the same chromosome as a gene whose sequence you have.
 - (C) find which section of a piece of DNA is transcribed into mRNA.
 - (D) determine the identity of a protein
- 85. The species of bacteria that possesses 250 genes for lipid biosynthesis is
 - (A) *M. genitalium* (B) *M. tuberculosis*
 - (C) E. coli (D) H. influenzae
- **86.** Small solid supports onto which are spotted thousands of tiny drops of DNA used to screen gene expression are
 - (A) Southern Blot (B) Cloning Library
 - (C) DNA microarrays (D) Nothern Blot
- **87.** Which of the following is a tool for motif identification ?
 - (A) COPIA (B) pattern hunter
 - (C) PROSPECT (D) BLAST
- 88. Which of the following tools are used for assessing homology and similarity ?(A) PROSPECT (B) EMBOSS (C) RASMOL (D) BLAST
- 89. Multiple sequence alignment can be done using(A) BLAST (B) CLUSTAL W (C) RASMOL (D) PROSPECT
- 90. NCBI Human Genome page gives information on
 - (A) Determine what genes are around the gene of interest on its chromosome.
 - (B) Identify a DNA sequence and see if it came from a human.
 - (C) Look up papers about diseases caused by abnormalities in a certain protein.
 - (D) Look at colorful, rotating, 3-D pictures of the tertiary structure of a protein.

Set - A

91.	Which of the following bacteria can grow in acidic medium ?								
	(A)	Vibrio choler	ae		(B)	Lactobacilli			
	(C)	Shigella			(D)	Salmonella			
92.	Whie	ch of the follow	ving is	a nucleotide	sequen	ce data base ?			
	(A)	EMBL	(B)	SWISS PRO	T(C)	PROSITE	(D)	TREMBL	
93.	Phece and <i>l</i>	phytin-quinon b is called	e type	e of system co	ontainii	ng roughly equ	ual an	nounts of chloroph	nylls <i>a</i>
	(A)	Photosystem	I		(B)	Photosystem	II		
	(C)	Z scheme			(D)	Calvin cycle			
94.	A re	combinant DN	A mo	lecule is also c	alled a				
	(A)	Chimera	(B)	Clone	(C)	Vector	(D)	Phage	
95.	5. Which of the following restriction enzymes produces 'sticky' ends ?								
	(A)	EcoRI	(B)	SmaI	(C)	PvuII	(D)	HaeIII	
96.	Befo	ore freeze dryin	g, a d	ense cell suspe	ension	is placed in sm	all via	ils and frozen at	
	(A)	-60°C to -78	°C		(B)	-20°C to -38	°C		
	(C)	-30°C to -48	°C		(D)	-40°C to -58°C			
97.	All c	of the following	g enzy	mes are involv	ved in 1	DNA replicatio	on, exc	cept	
	(A)	Helicase			(B)	Primase			
	(C)	DNA polyme	rase		(D)	RNA polyme	rase		
98.	The	solidifying age	nt nor	mally used for	r media	a preparation is	1		
	(A)	Silica gel	(B)	Gelatin	(C)	Acrylamide	(D)	Agar	
99.	Why	are heat-killed	l bacte	eria be useful a	as a vao	ccine?			
	(A)	They can cau	se a le	thal infection.					
	(B)	Heat degradat	tion of	f proteins char	iges the	eir shape.			
	(C)	Molecules fro	om the	cell surface a	re still	intact and can	provo	ke an immune resp	oonse.
	(D)	DNA molecu	les ca	n transform ot	her stra	ains of bacteria	•		
Set -	Α				12				BT

- 100. When a mixture of DNA fragments undergo gel electrophoresis,
 - (A) smaller fragments move slower and further on the gel relative to larger fragments.
 - (B) larger fragments move slower and further on the gel relative to smaller fragments.
 - (C) smaller fragments move faster, but not as far on the gel relative to larger fragments.
 - (D) larger fragments move slower and not as far on the gel relative to smaller fragments.

101. The number of nitrogenous bases that are codes for 9 amino acids would be

(A) 27 (B) 9 (C) 3 (D) 18

102. Which of the following enzymes would be considered a exonuclease, an enzyme with the ability to remove incorrectly matched nucleotides ?

- (A) DNA helicase (B) RNA polymerase
- (C) Peptidyl transferase (D) DNA polymerase

103. The principle behind PCR is

- (A) the cloning of one's entire DNA sequence to create genetically similar organisms
- (B) the combination of two different organism's DNA
- (C) the amplication of a specific region of the DNA for further study
- (D) the extraction of DNA from a cell

104.ATATATATAT is an example of
(A) SNP(B) SSR(C) RAPD(D) None of these

- **105.** The gene that was induced in flavr savr tomato for delayed ripening by suppressing production of ACC, a precursor to Ethylene is
 - (A) Polygalacturonase (B) Geraniol synthase
 - (C) ACC deaminase (D) ACC synthase

106. Yield coefficient represents

- (A) total biomass or product produced
- (B) conversion efficiency of a substrate into product
- (C) conversion rate of a substrate into biomass or product
- (D) production time of biomass or product

Set - A

- 107. The lowest biomass yield in a culture of *Escherichia coli* will be in
 - (A) an aerated batch culture containing a initial high concentration of glucose
 - (B) an aerated batch reactor containing an initial low concentration of glucose
 - (C) an aerated fed-batch reactor having a low glucose concentration
 - (D) an aerated continuous reactor having a low glucose concentration
- 108. The lowest yield of ATP is in
 - (A) fermentation (B) aerobic respiration
 - (C) anaerobic respiration (D) All of the above
- **109.** The continuous cultures are not widely used in industry because
 - (A) they are not suited for the production of secondary metabolites
 - (B) contamination or mutation can have a disastrous effect on the operation
 - (C) the government will not approve the licensing of pharmaceuticals produced in continuous cultures
 - (D) all of the above
- **110.** If biomass yields are constant, then the biomass productivity of a culture grown in continuous reactor will
 - (A) always decrease with dilution rate
 - (B) increase with dilution rate until washout
 - (C) remain constant irrespective of the dilution rate
 - (D) decrease with dilution rate until washout
- **111.** Acetyl CoA Carboxylase (ACC) is the first enzyme of the biosynthetic pathway of which of the following biomolecules ?
 - (A) Amino Acids (B) Monosaccarides
 - (C) Fatty Acids (D) Purines
- **112.** The most popular and commonly used, studied and characterized cells for expression of human recombinant glycoproteins whose glycosylation enzymes resemble of human cell lines are
 - (A) Chinese Hamster Ovary (CHO) (B) Human Fibroblast cells
 - (C) XPV cells (D) Embryonic stem cells

Set - A

113.	While choosing a gene to be transferred for genetic modification, the target gene should have							
	(A)	Promoter		(B)	Selectable ma	arker		
	(C)	Exon		(D)	All of the abo	ove		
114.	To c shou	reate a homozygous ld be and	pattern necess need to be inbu	ary foi red.	stable inherit	ance, f	first generation offspring	
	(A)	Homozygous		(B)	Heterozygous	8		
	(C)	Both (A) and (B)		(D)	None of the a	lbove		
115.	Whic	ch of the following (Genetically mo	dified	crop is comme	rcially	v cultivated in India?	
	(A)	Rice (B)	Cotton	(C)	Soyabean	(D)	Maize	
116.	To c	onfirm the presence	of the gene of	interes	t, which of the	follov	wing methods is used ?	
	(A)	Nothern Blotting		(B)	Western Blot	ting		
	(C)	Southern Blotting		(D)	None of the a	lbove		
117.	Rege	eneration of a modif	ied organism in	plants	s requires whic	h of tł	ne following technique?	
	(A)	Tissue culture		(B)	Embryonic st	em ce	lls	
	(C)	Bacterial cultures		(D)	All of the above			
118.	SV4	0 is a virus isolated	from					
	(A)	Hamster (B)	Monkey	(C)	Goat	(D)	Bacteria	
119.	The whose	purpose of the nances of the n	computer, whi software are al	ch con l in the	sists of DNA form of DNA	and D molec	NA processing enzymes cules, is to	
	(A)	Analyze DNA		(B)	Detect abnorn	malitie	es in the human body	
	(C)	Formulate remedie	ŚŚ	(D)	All of the abo	ove		
120.	Repr	oductive cloning in	animals is achi	eved tl	hrough			
	(A)	Tissue culture		(B)	Micropropaga	ation		
	(C)	Somatic nuclear tra	ansfer	(D)	None of the a	lbove		
Set -	A			15			ВТ	

SPACE FOR ROUGH WORK

Set - A

BIO TECHNOLOGY (BT) SET-A

Question No	Answer	Question No	Answer
1	В	61	В
2	A	62	В
3	В	63	С
4	С	64	А
5	D	65	В
6	А	66	В
7	В	67	В
8	В	68	С
9	С	69	В
10	А	70	В
11	В	71	С
12	С	72	А
13	В	73	С
14	С	74	D
15	С	75	С
16	D	76	А
17	D	77	D
18	В	78	D
19	А	79	С
20	В	80	С
21	В	81	В
22	А	82	D
23	D	83	В
24	А	84	D
25	В	85	В
26	С	86	С
27	А	87	А
28	С	88	D
29	В	89	В
30	С	90	А
31	А	91	В
32	В	92	А
33	В	93	В
34	В	94	А
35	А	95	А
36	D	96	А
37	В	97	D
38	В	98	D
39	А	99	С
40	D	100	D
41	С	101	А

42	А	102	D
43	В	103	С
44	С	104	В
45	С	105	А
46	С	106	В
47	В	107	Α
48	D	108	А
49	А	109	D
50	С	110	В
51	В	111	С
52	С	112	А
53	D	113	D
54	В	114	В
55	Α	115	В
56	В	116	С
57	А	117	Α
58	В	118	В
59	А	119	D
60	А	120	С