**Booklet No.:** 



### **ME - 16**

# **Mechanical Engineering**

| <b>Duration of Test: 2 Hours</b> |                 | Max. Marks: 120              |
|----------------------------------|-----------------|------------------------------|
|                                  | Hall Ticket No. |                              |
| Name of the Candidate:           |                 |                              |
| Date of Examination:             | OMR A           | nswer Sheet No. :            |
| Signature of the Candidate       | <u></u>         | Signature of the Invigilator |

#### **INSTRUCTIONS**

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

ME-16-A



## MECHANICAL ENGINEERING (ME)

A system of homogeneous linear equations AX = 0 has a nontrivial solution if

1.

|       | (A)                   | A  = -1                                                               | (B)                 | $ A  \neq 0$           | (C)      | A  = +1                                                                | (D)                               | A  = 0               |      |
|-------|-----------------------|-----------------------------------------------------------------------|---------------------|------------------------|----------|------------------------------------------------------------------------|-----------------------------------|----------------------|------|
| 2.    | If 2, 1               | +2i are the eig                                                       | gen val             | ues of a third         | order    | matrix A, then                                                         | the thir                          | d eigen value is     |      |
|       | (A)                   | 1-2i                                                                  | (B)                 | 1+i                    | (C)      | 2+3i                                                                   | (D)                               | 1/2                  |      |
| 3.    | If $f(x)$ then $G(x)$ |                                                                       | -2) sa              | tisfy Lagrang          | e Mea    | n Value theor                                                          | em at o                           | c in the interval [1 | ,3], |
|       | (A)                   |                                                                       | (B)                 | 1                      | (C)      | 2                                                                      | (D)                               | 0                    |      |
| 4.    | If $x =$              | $r\cos\theta$ , $y=r$                                                 | $r\sin\theta$ , $z$ | z = z, then the        | value    | of $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} =$                | :                                 |                      |      |
|       | (A)                   | $r^2$                                                                 | (B)                 | $\frac{1}{r}$          | (C)      | r 	an 	heta                                                            | (D)                               | r                    |      |
| 5.    | If $y =$              | $cx-c^3$ is the                                                       | genera              | al solution of t       | the diff | erential equat                                                         | ion                               |                      |      |
|       | (A)                   | y'' - xy' - y                                                         | =0                  |                        | (B)      | $(y')^3 - xy' +$                                                       | y = 0                             |                      |      |
|       | (C)                   | y''' - xy' - y                                                        | =0                  |                        | (D)      | y' = 0                                                                 |                                   |                      |      |
| 6.    | The co                | omplementary                                                          | / functi            | on of $y'' - 2y$       | y' + y = | $x^2 e^x \cos x$ is                                                    |                                   |                      |      |
|       | (A)                   | $c_1 \cos x + c_2 \sin x$                                             | n <i>x</i>          |                        | (B)      | $c_1 e^x + c_2 e^{-x}$                                                 |                                   |                      |      |
|       | (C)                   | $(c_1x+c_2)e^x$                                                       |                     |                        | (D)      | $(c_1x+c_2)xe^x$                                                       |                                   |                      |      |
| 7.    | If X is               | s a Poisson di                                                        | stribute            | ed variable an         | P(X)     | $(x = 0) = \frac{1}{2}$ , th                                           | en the p                          | orobability distribu | tion |
|       | function              |                                                                       |                     |                        |          | $e^{-}$                                                                |                                   |                      |      |
|       |                       |                                                                       | (B)                 | $\frac{e^{-3}3^x}{x!}$ | (C)      | $\frac{2^x}{x!}$                                                       | (D)                               | $\frac{1}{x!}$       |      |
| 8.    |                       | mean and vability distribut                                           |                     | of a binomi            | al dist  | ribution are 4                                                         | and 3                             | respectively, then   | the  |
|       | -                     | •                                                                     |                     |                        |          | -16(3)x(1                                                              | )16-x                             |                      |      |
|       |                       | $C x \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)^{x}$       |                     |                        |          | $C_{x}^{16} \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)^{x}$ | /                                 |                      |      |
|       | (C)                   | $C_{x}^{8} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{x}$ | 8-x                 |                        | (D)      | $C_{x}^{16} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{x}$ | $\left(\frac{1}{x}\right)^{16-x}$ |                      |      |
| 9.    | One ro                | oot of the equ                                                        | ation 1             | $f(x) = 2x^2 - 5$      | x + 2 =  | 0 lies in the in                                                       | nterval                           |                      |      |
|       |                       | (0,1)                                                                 | -                   | (1,2)                  |          | (-1,0)                                                                 |                                   | (-2,0)               |      |
| Set - | A                     |                                                                       |                     |                        | 2        |                                                                        |                                   |                      | ME   |

| 10.   | The             | method of succ                                           | essive           | approximation                    | $x_{k+1}$       | $=\phi(x_k)$ conver         | ges if  |                                                                              |
|-------|-----------------|----------------------------------------------------------|------------------|----------------------------------|-----------------|-----------------------------|---------|------------------------------------------------------------------------------|
|       | (A)             | $ \phi'(x)  < 1$                                         | (B)              | $ \phi(x)  > 1$                  | (C)             | $ \phi'(x)  > 0$            | (D)     | $ \phi'(x)  < 2$                                                             |
| 11.   | resul<br>(A)    | librium of a rig<br>tant force syste<br>Positive<br>Zero | -                | dy under a sys                   |                 | Negative                    |         | condition in which the egative or Zero                                       |
| 12.   |                 | coefficient of a                                         |                  |                                  | arge st         | ationary body               | and a   | small moving body is                                                         |
|       | ` ′             | static about to move                                     | <b>)</b>         |                                  | (B)<br>(D)      | about to come in uniform mo |         | lt                                                                           |
| 13.   | statio          |                                                          |                  | _                                |                 |                             | _       | without slipping on a instantaneous center of                                |
|       | (A)             | $4 \text{ kg.m}^2$                                       | (B)              | $3 \text{ kg.m}^2$               | (C)             | $2 \text{ kg.m}^2$          | (D)     | $1 \text{ kg.m}^2$                                                           |
| 14.   | acce            | leration after 2                                         | secon            | ds is                            |                 | _                           |         | $V = 2t^3 - 3t^2$ m/sec. Its                                                 |
|       | (A)             | $8 \text{ m/s}^2$                                        | (B)              | $15 \text{ m/s}^2$               | (C)             | $21 \text{ m/s}^2$          | (D)     | 12 m/s <sup>2</sup>                                                          |
| 15.   |                 | ear wheel of parential accelerate                        |                  |                                  |                 |                             | accele  | eration of 6 rad/ $s^2$ . The                                                |
|       | (A)             | $6.0 \text{ rad/s}^2$                                    | (B)              | $3.0 \text{ m/s}^2$              | (C)             | $5.0 \text{ m/s}^2$         | (D)     | $6.0 \text{ m/s}^2$                                                          |
| 16.   | passi<br>hang   | ing over a smo                                           | ooth p<br>nass N | ulley. Mass m<br>M is moving d   | lies o          | on smooth hor               | izonta  | light inextensible string<br>I plane and mass M is<br>of the system is (g is |
|       | (A)             | g                                                        | (B)              | 2g                               | (C)             | 2g/3                        | (D)     | 3g/2                                                                         |
| 17.   | with<br>move    | another body of                                          | of mas<br>a sing | s 10 kg moving<br>le entity with | g in th<br>same | e same direction            | on at 5 | aless surface. It collides 5.5 m/s. Both the bodies sion. What is the final  |
|       | (A)             | 5.5 m/sec                                                | (B)              | 7 m/sec                          | (C)             | 7.8 m/sec                   | (D)     | 10 m/sec                                                                     |
| 18.   | The (A) (B) (C) | state of stress a<br>Scalar<br>Vector<br>Tensor          | t a poi          | int in an elastic                | body            | is a                        |         |                                                                              |
|       | (D)             |                                                          | ove de           | epending on the                  | e shap          | e of the body               |         |                                                                              |
| Set - | A               |                                                          |                  |                                  | 3               |                             |         | ME                                                                           |

|       | are (A) +100, -100 (B) +50, -50 (C) 0, 100 (D) +200, -200                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.   | Pick the incorrect statement from the following four statements:  (A) On the plane which carries maximum normal stress, the shear stress is zero.  (B) Principle planes are mutually orthogonal.  (C) On the plane, which carries maximum shear stress, the normal stress is zero.  (D) The principle stress axes and principle strain axes coincide for an isotropic material.                                             |
| 22.   | A cantilever beam is subjected to a couple at its free end. Labeling BM for Bending Moment and SF for shear force.  (A) In any part of the beam BM is Constant and SF is Zero  (B) In any part of beam SF is Constant and BM is Zero  (C) SF varies linearly and BM has parabolic variation  (D) BM varies linearly and SF has parabolic variation                                                                          |
| 23.   | A simply supported beam has its longitudinal axis parallel to X-axis. It is subjected to transverse load parallel to Y-axis. The width of the beam measured parallel to Z-axis is double the thickness measured parallel to Y-axis. The neutral axis of the beam is parallel to  (A) X axis  (B) Y axis  (C) Z axis  (D) Either X or Y axis.                                                                                |
| 24.   | A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft such that the outer diameter $D_0$ remains same as that of the solid shaft and inner diameter $D_i$ is one fourth of the outer diameter (ie. $D_i$ =0.25 $D_o$ ). Rest of the variables remains unaltered. The stiffness of the hallow shaft is ?  (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$ |
| 25.   | A planar mechanism consists of 8 links, 8 turning pairs and 2 sliding pairs. The number of degrees of freedom for the mechanism is (A) 0 (B) 1 (C) 2 (D) -1                                                                                                                                                                                                                                                                 |
| 26.   | In a special Grashoff's four bar mechanism the input and output links are equal and longer while the coupler and fixed links are equal and shorter. When both the input and output links are perpendicular to the fixed link the velocity ratio is                                                                                                                                                                          |
| Set · | (A) $\leq 0$ (B) >1 (C) = 1 (D) Infinity  A ME                                                                                                                                                                                                                                                                                                                                                                              |

In a shaft under pure torsion the shear stress is given as 100 MPa. The principle stresses

In a structural element made of linear elastic material

Stiffness and flexibility are not related.

Stiffness is equal to flexibility.

Stiffness is directly proportional to flexibility. Stiffness is inversely proportional to flexibility.

**19.** 

**20.** 

(B)

(C)

(D)

| Set - | A                                                                                                                                                                                                                                                                                   |                                  |                             |                                                                                      | 5                     |                              |         |                                                         | ME     |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|--------------------------------------------------------------------------------------|-----------------------|------------------------------|---------|---------------------------------------------------------|--------|--|
| 35.   | _                                                                                                                                                                                                                                                                                   | oing ratio ?                     | per sys                     | stem has M = 0.25                                                                    | 1 kg, (C)             |                              | and (D) | K = 4 N/m. What $0.5$                                   | is the |  |
| 34.   |                                                                                                                                                                                                                                                                                     | ion the net force Zero           | e on tl                     |                                                                                      | (B)                   | In the direction             |         | en the bob is at its motion                             | mean   |  |
| 33.   | In a (A) (B) (C) (D)                                                                                                                                                                                                                                                                | Acceleration Acceleration        | is max<br>is Zero<br>is min | system while to simum and Velocity imum and Velocity or and Velocity or and Velocity | locity<br>is minocity | is Zero<br>nimum<br>is Zero  | the the | mean position                                           |        |  |
| 32.   | whee                                                                                                                                                                                                                                                                                |                                  |                             | • • • •                                                                              |                       | -                            | crow    | s of the inner and<br>n wheel will be<br>given data     | outer  |  |
| 31.   |                                                                                                                                                                                                                                                                                     | ging with a gea                  |                             | el of any numb                                                                       |                       | teeth must be a              |         |                                                         | oinion |  |
| 30.   |                                                                                                                                                                                                                                                                                     | mes maximum<br>Minimum           | and th                      | ne magnitude o                                                                       | f the s<br>(B)        |                              | lance   |                                                         | force  |  |
| 29.   | Whe                                                                                                                                                                                                                                                                                 | re F is the cont condition for a | rol Fo                      | rce, r is the rad                                                                    | lius o                | f rotation for th            | ne ball | er equation $F=a$ as, a and b are cons<br>a < 0 & b > 0 |        |  |
|       |                                                                                                                                                                                                                                                                                     | d will be<br>Reduced to 2        | 5 %                         | l one but doub                                                                       | (B)<br>(D)            | Increases by<br>Reduced to 5 | 100 %   | ficient of fluctuati                                    | ion of |  |
| 28.   |                                                                                                                                                                                                                                                                                     | -                                |                             | •                                                                                    |                       |                              |         | torque produced by another one havir                    | •      |  |
|       | is<br>(A)                                                                                                                                                                                                                                                                           | 0                                | (B)                         | 2NV                                                                                  | (C)                   | π NV/30                      | (D)     | π NV/15                                                 |        |  |
| 27.   | An open chain planar mechanism has one turning pair and one sliding pair. A slender link rotates at N rpm with respect to the fixed link while the slider reciprocates along the axis of the slender link with a velocity of V m/sec. The Coriolis acceleration of the sliding link |                                  |                             |                                                                                      |                       |                              |         |                                                         |        |  |

|       | _               |                                  |                    |                                 | _          | ency is 2 rad/s                      |                    |                                                                 |       |
|-------|-----------------|----------------------------------|--------------------|---------------------------------|------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------|
|       | (A)             | 1                                | (B)                | Infinity                        | (C)        | 2                                    | (D)                | 0.5                                                             |       |
| 37.   | curve<br>the re | with amplitude                   | de of (<br>ocity o | 0.1 m and way                   | veleng     | th 10 m/sec. w                       | hen tl             | oximated as a harm<br>he vehicle travels a<br>motion problem wh | long  |
|       |                 |                                  |                    | 2π rad/sec                      | (C)        | 10 π rad/sec                         | (D)                | $20 \pi \text{ rad/sec}$                                        |       |
| 38.   |                 | -                                | -                  |                                 | _          | has a critical s<br>ritical speed wi | -                  | N rpm. When the s                                               | short |
|       | (A)             | N                                | (B)                | 2 N                             | (C)        | 4 N                                  | (D)                | N/2                                                             |       |
| 39.   |                 | e design of metion in            | achine             | components                      | if the     | factor of safet                      | ty is in           | ncreased it leads to                                            | the   |
|       | (A)             | Size                             | (B)                | Cost                            | (C)        | Induced Stres                        | s (D)              | All the above.                                                  |       |
| 40.   | A co            | mponent made                     | of brit            | tle material su                 | ıbjecte    | ed to pure shear                     | fails              |                                                                 |       |
|       | (A)             | by yielding w                    | then $\tau_r$      | $_{\text{max}} = S_{\text{yt}}$ | (B)        | by fracture w<br>by yielding w       | hen τ <sub>r</sub> | $_{\text{max}} = \text{Syt/2}$                                  |       |
|       | (C)             | by fracture w                    | hen τ <sub>m</sub> | $_{\text{max}} = \text{Sut/2}$  | (D)        | by yielding w                        | vhen τ             | $_{\text{max}} = \text{Sut/2}$                                  |       |
| 41.   | facto           | $r(k_t)$ and fatig               | ue (or)            | form stress co                  | oncent     | ration (k <sub>f</sub> ) is gi       | ven by             |                                                                 | ation |
|       | (A)             | $q = \frac{k_f}{k_t}$            | (B)                | $q = \frac{k_t - 1}{k_f - 1}$   | (C)        | $q = \frac{k_f - 1}{K_t - 1}$        | (D)                | $q = \frac{k_f + 1}{k_f + 1}$                                   |       |
| 42.   |                 |                                  |                    | lial load and t                 |            |                                      | _                  | among the followin                                              | g is  |
|       |                 | Needle bearin<br>Cylindrical ro  | _                  | aring                           | (B)<br>(D) | Spherical roll<br>Journal bearing    |                    | ring                                                            |       |
| 43.   | Effec           | et of increasing                 | stiffne            | ess of springs                  | in a ce    | entrifugal clutch                    | n leads            | s to                                                            |       |
|       | (A)<br>(B)      | Increase in sp                   |                    | ~ ~                             | mum (      | e <b>n</b> ood                       |                    |                                                                 |       |
|       | (C)             | Increase in fri<br>Decrease the  |                    | -                               |            | specu                                |                    |                                                                 |       |
|       | (D)             | All the above                    |                    |                                 |            |                                      |                    |                                                                 |       |
| 44.   |                 | ake is said to be                |                    |                                 |            |                                      |                    |                                                                 |       |
|       | (A)<br>(B)      |                                  |                    | t necessary to                  | -          | te the brake<br>gage the brake       |                    |                                                                 |       |
|       | (C)             | The breaking                     | force              | and the frictio                 | n forc     | e induce mome                        |                    | the same direction                                              |       |
|       | (D)             | The breaking                     | force              | and the frictio                 | n forc     | e induce mome                        | ent in o           | opposing directions                                             |       |
| 45.   | tensil          | le force P. Assi                 | uming              | uniform stress                  |            |                                      |                    | d leg a is subjected ess in the weld is                         | to a  |
|       | (A)             | $(\sqrt{2} \text{ P})/\text{aL}$ | (B)                | $P/\sqrt{2}$ aL                 | (C)        | P/aL                                 | (D)                | 2P/aL                                                           |       |
| Set - | A               |                                  |                    |                                 | 6          |                                      |                    |                                                                 | ME    |
| Det - |                 |                                  |                    |                                 | U          |                                      |                    |                                                                 | 14117 |

36. A spring mass damper system has M = 1 kg, C = 2 N.sec/m and K = 4 N/m. What is the

| 46.   |                                            | -                                | vet the  | glass. This is   |          |                 |              | iquid, known a   | S         |  |
|-------|--------------------------------------------|----------------------------------|----------|------------------|----------|-----------------|--------------|------------------|-----------|--|
|       | (A)                                        | Cohesion                         |          |                  | (B)      | Surface tens    | 10n          |                  |           |  |
|       | (C)                                        | Adhesion                         |          |                  | (D)      | Viscosity       |              |                  |           |  |
| 47.   | A flu                                      | id in equilibriu                 | ım caı   | n't sustain      |          |                 |              |                  |           |  |
|       | (A)                                        | Shear stresses                   | S        |                  | (B)      | Tensile stres   | sses         |                  |           |  |
|       | (C)                                        | Compressive                      | stress   | es               | (D)      | Bending stre    | esses        |                  |           |  |
| 48.   | Choc                                       | ose the wrong s                  | statem   | ent              |          |                 |              |                  |           |  |
|       | (A)                                        | -                                |          | id is that prop  | perty w  | hich determin   | nes the      | amount of its r  | esistance |  |
|       | ( <b>D</b> )                               | to a shearing                    |          | 1 .              | .1 .     | . ,             |              |                  |           |  |
|       | (B)                                        | Viscosity of l                   | -        |                  |          | -               |              | 1                |           |  |
|       | (C)<br>(D)                                 | Viscosity is d<br>Viscosity of t | -        | •                |          |                 |              |                  |           |  |
|       | (D)                                        | viscosity of t                   | ne nq    | uiu is appiecia  | iviy aii | ected by chan   | ige iii p    | ressure.         |           |  |
| 49.   | When                                       | n a body floati                  | _        | a liquid, is dis | placed   | slightly then i | t oscill     | ates about       |           |  |
|       | (A)                                        | -                                | ssure    |                  | (B)      |                 |              |                  |           |  |
|       | (C)                                        | Meta center                      |          |                  | (D)      | Gravitationa    | l cente      | ſ                |           |  |
| 50.   | In a f                                     | free vortex mot                  | tion, t  | he radial com    | onent    | of velocity ev  | erywhe       | ere is           |           |  |
|       | (A)                                        | Zero                             | (B)      | Maximum          | (C)      | Minimum         | (D)          | Non-zero and     | finite    |  |
| 51.   | The v                                      | velocity profile                 | e for tu | arbulent flow    | through  | n a closed con  | duit is      |                  |           |  |
|       | (A)                                        | Linear                           | (B)      | Parabolic        | (C)      | Hyperbolic      | (D)          | Logarithmic      |           |  |
| 52.   | Boundary layer separation is caused by the |                                  |          |                  |          |                 |              |                  |           |  |
|       |                                            | (A) Adverse pressure gradient.   |          |                  |          |                 |              |                  |           |  |
|       | (B)                                        |                                  |          |                  |          |                 |              |                  |           |  |
|       | (C)                                        |                                  |          |                  |          |                 |              |                  |           |  |
|       | (D)                                        |                                  |          |                  |          |                 |              |                  |           |  |
| 53.   | The t                                      | emperature in                    | isentr   | opic flow        |          |                 |              |                  |           |  |
|       | (A)                                        | Depends on N                     | Mach r   | number only.     |          |                 |              |                  |           |  |
|       | (B)                                        | May or may r                     | not de   | pends on Mac     | h numb   | er.             |              |                  |           |  |
|       | (C)                                        | Does not depe                    | end or   | Mach numbe       | er.      |                 |              |                  |           |  |
|       | (D)                                        | Can't say                        |          |                  |          |                 |              |                  |           |  |
| 54.   | Whic                                       | ch of the follow                 | ving is  | not a dimens     | ion-les  | s parameter ?   |              |                  |           |  |
|       | (A)                                        | Euler number                     |          |                  | (B)      | Fanning fric    | tion fac     | ctor             |           |  |
|       | (C)                                        | Specific gravi                   | ity      |                  | (D)      | None of the     | above        |                  |           |  |
| 55.   | A pie                                      | ece of metal o                   | of spec  | cific gravity    | 7 floats | in mercury      | of spec      | eific gravity 13 | .6. What  |  |
|       |                                            | ion of it will un                |          | •                |          | A h a + O 5     | ( <b>D</b> ) | A h a + 0 65     |           |  |
|       | (A)                                        | About 0.4                        | (B)      | About 0.6        | (C)      | About 0.5       | (D)          | About 0.65       |           |  |
| Set - | $\cdot $ $A$                               |                                  |          |                  | 7        |                 |              |                  | ME        |  |

| <b>56.</b> | Acco                                                                                                                                                            | rding to kinetic theory of gases, the                                     | absol      | ute zero temperature can be attained when                          |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|--------------------------------------------------------------------|--|--|--|--|--|--|
|            |                                                                                                                                                                 | Volume of gas is zero                                                     |            | Kinetic energy of molecules is zero                                |  |  |  |  |  |  |
|            | (C)                                                                                                                                                             | Specific heat of gas is zero                                              | (D)        | Mass is zero                                                       |  |  |  |  |  |  |
| <b>57.</b> | Whic                                                                                                                                                            | th of the following is correct?                                           |            |                                                                    |  |  |  |  |  |  |
|            | (A)                                                                                                                                                             | Only gases have two values of spec                                        | cific h    | eat.                                                               |  |  |  |  |  |  |
|            | (B)                                                                                                                                                             | Both gases and liquids have two va                                        | alues o    | of specific heat.                                                  |  |  |  |  |  |  |
|            | (C)                                                                                                                                                             | Specific heat value is constant irres                                     | specti     | ve of state of substance.                                          |  |  |  |  |  |  |
|            | (D)                                                                                                                                                             | Only liquids have two values of sp                                        | ecific     | heat.                                                              |  |  |  |  |  |  |
| 58.        | A he know                                                                                                                                                       |                                                                           | duct o     | of pressure and volume remains constant is                         |  |  |  |  |  |  |
|            |                                                                                                                                                                 | Adiabatic process                                                         | (B)        | Throttling process                                                 |  |  |  |  |  |  |
|            |                                                                                                                                                                 | Isentropic process                                                        | (D)        | Hyperbolic process                                                 |  |  |  |  |  |  |
| -0         |                                                                                                                                                                 |                                                                           | •          |                                                                    |  |  |  |  |  |  |
| 59.        | <b>9.</b> The absolute temperature of an ideal diatomic gas is quadrupled. What happens to the average speed of molecules ?                                     |                                                                           |            |                                                                    |  |  |  |  |  |  |
|            |                                                                                                                                                                 | Quadruples                                                                | (B)        | Doubles                                                            |  |  |  |  |  |  |
|            | (C)                                                                                                                                                             | Triples                                                                   | (D)        | Increases by a factor of 1.41                                      |  |  |  |  |  |  |
| 60.        |                                                                                                                                                                 | <del>-</del>                                                              | _          | perfectly insulated, sealed container that has                     |  |  |  |  |  |  |
|            | _                                                                                                                                                               | tiner is flexible. After some time on                                     |            | ice completely fill the container, but the                         |  |  |  |  |  |  |
|            | (A)                                                                                                                                                             |                                                                           |            | -                                                                  |  |  |  |  |  |  |
|            | <ul><li>(A) The water will freeze so that the mass of the ice will increase.</li><li>(B) The ice will melt so that the mass of the ice will decrease.</li></ul> |                                                                           |            |                                                                    |  |  |  |  |  |  |
|            | (C) Both the amount of water and the amount of ice will remain constant.                                                                                        |                                                                           |            |                                                                    |  |  |  |  |  |  |
|            | (D)                                                                                                                                                             | Both the amount of water and the a                                        |            |                                                                    |  |  |  |  |  |  |
| <i>(</i> 1 | *****                                                                                                                                                           | 1 (4 ( 11 ) )                                                             |            |                                                                    |  |  |  |  |  |  |
| 61.        |                                                                                                                                                                 | th of the following is correct?                                           |            | out to                                                             |  |  |  |  |  |  |
|            | (A)                                                                                                                                                             | Both Stirling and Ericson cycle are                                       |            |                                                                    |  |  |  |  |  |  |
|            | (B)<br>(C)                                                                                                                                                      | Both Stirling and Ericson cycle are<br>Neither Stirling and Ericson cycle |            |                                                                    |  |  |  |  |  |  |
|            | (D)                                                                                                                                                             | Stirling cycle is reversible and Eric                                     |            |                                                                    |  |  |  |  |  |  |
|            |                                                                                                                                                                 | 8 · <b>,</b> · · · · · · · · · · · · · · · · · · ·                        |            | <b>,</b>                                                           |  |  |  |  |  |  |
| <b>62.</b> |                                                                                                                                                                 | the following Statements:                                                 |            |                                                                    |  |  |  |  |  |  |
|            | (i)                                                                                                                                                             |                                                                           |            | n Diesel cycle efficiency for the same                             |  |  |  |  |  |  |
|            |                                                                                                                                                                 | compression ratio and heat input volume.                                  | becau      | se in Otto cycle combustion is at constant                         |  |  |  |  |  |  |
|            | (ii)                                                                                                                                                            |                                                                           | · thai     | n Diesel cycle efficiency for the same                             |  |  |  |  |  |  |
|            |                                                                                                                                                                 |                                                                           |            | use in Otto cycle maximum temperature is                           |  |  |  |  |  |  |
|            |                                                                                                                                                                 | higher.                                                                   |            |                                                                    |  |  |  |  |  |  |
|            | (iii)                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • •                                   |            | n Diesel cycle efficiency for the same                             |  |  |  |  |  |  |
|            | (1)                                                                                                                                                             | -                                                                         |            | e in Otto cycle heat rejection is lower.                           |  |  |  |  |  |  |
|            | (A)<br>(C)                                                                                                                                                      | Only (i) is correct Only (iii) is correct                                 | (B)<br>(D) | Both (i) and (iii) are correct<br>Both (ii) and (iii) are correct. |  |  |  |  |  |  |
|            | (C)                                                                                                                                                             | Omy (m) is correct                                                        | (D)        | Dom (ii) and (iii) are confect.                                    |  |  |  |  |  |  |
| Set -      | A                                                                                                                                                               |                                                                           | 8          | ME                                                                 |  |  |  |  |  |  |

| os. Iteaa the following statement | <b>63.</b> | Read | the | follo | wing | Statements |
|-----------------------------------|------------|------|-----|-------|------|------------|
|-----------------------------------|------------|------|-----|-------|------|------------|

- (i) Thermal conductivity of air with rise in temperature increases.
- (ii) Thermal conductivity of non-metallic amorphous solids with decrease in temperature decreases.
- (iii) Thermal conductivity of solid metals with rise in temperature normally increases.
- (A) All (i), (ii) and (iii) are correct
- (B) Only (i) and (iii) are correct
- (C) Only (ii) and (iii) are correct
- (D) Only (i) and (ii) are correct
- **64.** The concept of overall heat transfer coefficient is used in heat transfer problem of
  - (A) Conduction and convection
- (B) Conduction and radiation
- (C) Convection and radiation
- (D) Conduction, convection and radiation
- **65.** Which of the following statement is correct pertaining to thermal diffusivity?
  - (A) It is a function of temperature
  - (B) It is inversely proportional to thermal conductivity
  - (C) It is property of material
  - (D) It is a dimensionless parameter
- **66.** In free convection heat transfer transition from laminar to turbulent flow is governed by the critical value of the
  - (A) Prandtl number, Grashoff's number
  - (B) Reynold's number, Grashoff's number
  - (C) Reynold's number, Prandtl number
  - (D) Reynold's number
- **67.** The by-pass factor for a cooling coil
  - (A) May increase or decrease with increase in velocity of air passing through it depending upon the condition of air entering.
  - (B) Decreases with increase in velocity of air passing through it.
  - (C) Increases with increase in velocity of air passing through it.
  - (D) Remains unchanged with increase in velocity of air passing through it.
- **68.** Which of the following statement is correct?
  - (A) The minimum temperature to which water can be cooled in a cooling tower is wet bulb temperature.
  - (B) The minimum temperature to which water can be cooled in a cooling tower is dew point temperature of air.
  - (C) The minimum temperature to which water can be cooled in a cooling tower is ambient temperature of air.
  - (D) The minimum temperature to which water can be cooled in a cooling tower is dry bulb temperature of air.

- **69.** Stanton number is defined as
  - (A) The ratio of Prandtl number and the product of Nusselt number and Reynold's number.
  - (B) The ratio of Prandtl number and the product of Nusselt number and Raleigh's number.
  - (C) The ratio of Reynold's number and the product of Nusselt number and Prandtl number
  - (D) The ratio of Nusselt number and the product of Reynold's number and Prandtl number.
- **70.** The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner radius
  - (A) Decreases

(B) Increases

(C) Constant

- (D) May increase or decrease
- **71.** Which of the following statements is correct?
  - (A) High value of Prandtl number indicates Rapid heat transfer by forced convection to natural convection.
  - (B) High value of Prandtl number indicates Rapid diffusion of momentum by viscous action compared to diffusion of energy.
  - (C) High value of Prandtl number indicates relative heat transfer by conduction to convection.
  - (D) High value of Prandtl number indicates relative heat transfer by radiation to convection.
- **72.** Which of the following is not true pertaining to four stroke internal combustion engine?
  - (A) Because of one power stroke in two revolutions, lesser cooling and lubrication requirement, thus lesser rate of wear and tear compared to two stroke cycle engine.
  - (B) High initial cost compared to two stroke cycle engine
  - (C) Volumetric efficiency lesser compared to two stroke cycle engine, due to less time available for induction.
  - (D) Part load efficiency is better than two stroke cycle engine.
- **73.** Mechanical efficiency of the internal combustion engine is defined as
  - (A) Ratio of indicated work to the energy supplied by the fuel.
  - (B) Ratio of shaft work obtained to the energy supplied by the fuel.
  - (C) Ratio of power obtained at the shaft to the indicated power.
  - (D) Ratio of power obtained at the shaft to the actual volume inhaled during suction stroke.
- **74.** Read the following Statements:
  - (i) Regenerative cycle thermal efficiency is always greater than simple Rankine cycle.
  - (ii) The maximum percentage gain in Regenerative feed heating cycle thermal efficiency, increases with more number of feed heaters.
  - (iii) In a regenerative feed heating cycle, the optimum value of fraction of steam extracted for feed heating decreases with increase in Rankine cycle efficiency.
  - (A) Only (i) and (ii) are correct
- (B) Only (i) and (iii) are correct
- (C) All above statements are correct
- (D) Only (ii) and (iii) are correct.

| <i>75.</i> | The          | work output of theoretical Otto cycl  | e       |                                                                                |
|------------|--------------|---------------------------------------|---------|--------------------------------------------------------------------------------|
|            | (A)          | Increases with increase in adiabati   |         |                                                                                |
|            | (B)          | Decreases with increase in pressur    | e ratio | )                                                                              |
|            | (C)          | Decreases with increase in compre     | ession  | ratio                                                                          |
|            | (D)          | None of the above                     |         |                                                                                |
| <b>76.</b> | The          | overall efficiency of a reaction turb | ine is  | the ratio of                                                                   |
|            | (A)          | •                                     |         | (or head of water) actually supplied to the                                    |
|            |              | turbine                               |         | · · · · · · · · · · · · · · · · · · ·                                          |
|            | (B)          | Actual work available at the turbin   |         |                                                                                |
|            | (C)          | 1                                     |         |                                                                                |
|            | (D)          | Power produced by the turbine to      | the en  | ergy actually supplied by the turbine                                          |
| 77.        | Any          | change in load is adjusted by the ad  | ljustin | g the following parameter on turbine                                           |
|            | (A)          | Blade velocity                        | (B)     | Flow                                                                           |
|            | (C)          | Net head                              | (D)     | Relative velocity at the inlet                                                 |
| <b>78.</b> | The          | specific speed of a turbine is the    | speed   | of an imaginary turbine, identical with the                                    |
|            |              | n turbine, which                      | •       | •                                                                              |
|            | (A)          | Develops unit power under unit he     |         |                                                                                |
|            | (B)          | Delivers unit discharge under unit    |         |                                                                                |
|            | (C)          | •                                     |         |                                                                                |
|            | (D)          | Develops unit power under unit sp     | eed     |                                                                                |
| <b>79.</b> | Cho          | ose the wrong statement               |         |                                                                                |
|            | (A)          |                                       | each    | time it flows through a finite temperature                                     |
|            | ( <b>D</b> ) | difference.                           |         |                                                                                |
|            | (B)          | - · ·                                 | _       | y transferred by heat transfer from high ature difference should be increased. |
|            | (C)          | 1                                     | -       | always less than the reversible work.                                          |
|            | (D)          | None of the above.                    |         |                                                                                |
| 80.        | Free         | zing temperature of water decreases   | with    |                                                                                |
| 00.        | (A)          | None of the following                 | (B)     | Increases or decreases with pressure                                           |
|            | (C)          | Decrease in pressure                  | (D)     | Increase in pressure                                                           |
|            | , ,          | -                                     | ` /     |                                                                                |
| 81.        |              |                                       |         | ich is used to make the blades of bulldozers,                                  |
|            |              |                                       |         | ng equipment contain iron, carbon and                                          |
|            | (A)          | Chromium (B) Silicon                  | (C)     | Manganese (D) Magnesium                                                        |
| 82.        |              |                                       | using   | universal testing machine, the parameters                                      |
|            |              | ally measured include                 |         |                                                                                |
|            | (A)          |                                       | .1      |                                                                                |
|            | (B)          | Poisson's ratio and Young's modu      |         | n                                                                              |
|            | (C)<br>(D)   |                                       | z sıral | 11                                                                             |
|            | (D)          | Loud and Clongation                   |         |                                                                                |
| Set -      | A            |                                       | 11      | ME                                                                             |
| ~          |              |                                       |         | 1,12                                                                           |

| 83.                               | Heating the hypo-eutectoid steels to 30 °C above the upper critical temperature line, soaking at the temperature and then cooling slowly to room temperature to form a pearlite and ferrite structure, is known as                                                                                                                |                                                                                        |                          |                                                 |                |                                   |         |                                         |        |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|----------------|-----------------------------------|---------|-----------------------------------------|--------|--|--|
|                                   |                                                                                                                                                                                                                                                                                                                                   | Hardening                                                                              |                          |                                                 | (C)            | Tempering                         | (D)     | Annealing                               |        |  |  |
| 84.                               | (A)<br>(B)<br>(C)                                                                                                                                                                                                                                                                                                                 | se of power scre<br>Cast iron scre<br>Carbon steel s<br>Cast iron scre<br>Aluminium sc | w and nacrew and control | nild steel nut<br>ad phosphor b<br>ast iron nut | oronze         |                                   | s used  | for the screw and                       | nut    |  |  |
| 85.                               | whic                                                                                                                                                                                                                                                                                                                              | h one of the fol                                                                       | llowing                  |                                                 | st ach         | •                                 | ns of l | base structure ma                       | de of  |  |  |
|                                   | ` ′                                                                                                                                                                                                                                                                                                                               | Low carbon st<br>Grey cast iron                                                        |                          |                                                 | (B)<br>(D)     |                                   |         |                                         |        |  |  |
| 86.                               | allow                                                                                                                                                                                                                                                                                                                             |                                                                                        | rn maki                  | ing is 1 %. '                                   |                |                                   |         | and moulds. Shring f pattern to that of | _      |  |  |
|                                   | (A)                                                                                                                                                                                                                                                                                                                               | 0.97                                                                                   | (B) 0                    | ).99                                            | (C)            | 1.01                              | (D)     | 1.03                                    |        |  |  |
| <ul><li>87.</li><li>88.</li></ul> | Bottom gating system is some times preferred in casting because  (A) It enables rapid filling of mould cavity  (B) It is easier to provide in the mould  (C) It provides cleaner metal  (D) It reduces splashing and turbulence  Misrun is a casting defect which occurs due to  (A) A very high pouring temperature of the metal |                                                                                        |                          |                                                 |                |                                   |         |                                         |        |  |  |
|                                   | (B)<br>(C)<br>(D)                                                                                                                                                                                                                                                                                                                 | Insufficient fle<br>Absorption of<br>Improper alig                                     | uidity of<br>gases b     | f the molten by the liquid i                    | metal<br>metal |                                   |         |                                         |        |  |  |
| 89.                               | Which (A) (C)                                                                                                                                                                                                                                                                                                                     | ch of the follow<br>Hollow castin<br>Thin castings                                     | _                        |                                                 |                | _                                 |         | h thin walls                            |        |  |  |
| 90.                               |                                                                                                                                                                                                                                                                                                                                   | ch one of the f<br>igh a number o                                                      |                          |                                                 | consist        | s of central spi                  | rue to  | feed metal into ca                      | vities |  |  |
|                                   | (A)<br>(C)                                                                                                                                                                                                                                                                                                                        | Centrifuging True centrifug                                                            | gal castii               | ng                                              | (B)<br>(D)     | Semi-centrifu<br>Precision cast   | _       | sting                                   |        |  |  |
| 91.                               |                                                                                                                                                                                                                                                                                                                                   | lling a strip bet<br>lepends on                                                        | tween tv                 | wo rolls, the                                   | positio        | on of the neutra                  | al poin | at in arc of contact                    | does   |  |  |
|                                   | (A)<br>(C)                                                                                                                                                                                                                                                                                                                        | Amount of red<br>Coefficient of                                                        |                          |                                                 | (B)<br>(D)     | Diameter of re<br>Materials of re |         |                                         |        |  |  |
| Set -                             | A                                                                                                                                                                                                                                                                                                                                 |                                                                                        |                          |                                                 | 12             |                                   |         |                                         | ME     |  |  |

| 92.        | In open die forging a disc of diameter of any barreling effect, the final diameter of (A) 1.986 (B) 1.686    | of disc    | _                             | -                          | ut |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------|------------|-------------------------------|----------------------------|----|--|--|--|--|--|--|
| 93.        | The operation in which oil is permeate known as                                                              | ed into    | the pores of p                | owder metallurgy product   | is |  |  |  |  |  |  |
|            | (A) 0.97 (B) 0.99                                                                                            | (C)        | 1.01                          | (D) 1.03                   |    |  |  |  |  |  |  |
| 94.        | Which one of the following manufactur                                                                        |            |                               |                            |    |  |  |  |  |  |  |
|            | <ul><li>(A) closed die forging</li><li>(C) investment casting</li></ul>                                      | (B)<br>(D) | centrifugal casimpact extrusi |                            |    |  |  |  |  |  |  |
| 05         |                                                                                                              | ` '        | _                             |                            |    |  |  |  |  |  |  |
| 95.        | The collapsible tooth paste tubes are ma<br>(A) direct extrusion                                             | (B)        | piercing                      |                            |    |  |  |  |  |  |  |
|            | (C) impact extrusion                                                                                         | (D)        | indirect extrus               | sion                       |    |  |  |  |  |  |  |
| 96.        | In which one of the following welding techniques is vacuum environment is required?                          |            |                               |                            |    |  |  |  |  |  |  |
|            | (A) Ultrasonic welding                                                                                       | -          | Laser beam w                  | -                          |    |  |  |  |  |  |  |
|            | (C) Plasma arc welding                                                                                       | (D)        | Electron beam                 | welding                    |    |  |  |  |  |  |  |
| 97.        | High alloy steel components are preheat                                                                      | ted bef    | Fore welding for              | reducing                   |    |  |  |  |  |  |  |
|            | (A) heat affected zone                                                                                       | (B)        | total energy co               |                            |    |  |  |  |  |  |  |
|            | (C) total time of welding                                                                                    | (D)        | welding stress                | es                         |    |  |  |  |  |  |  |
| 98.        | Which one among the following welding                                                                        |            |                               |                            |    |  |  |  |  |  |  |
|            | (A) Gas metal arc welding                                                                                    | (B)        | _                             | •                          |    |  |  |  |  |  |  |
|            | (C) Gas tungsten arc welding                                                                                 | (D)        | Flux coated an                | c welding                  |    |  |  |  |  |  |  |
| <b>99.</b> | The type of coated electrode most widel                                                                      | •          | _                             |                            |    |  |  |  |  |  |  |
|            | (A) Cellulose (B) Acidic                                                                                     | (C)        | Rutile                        | (D) Oxide                  |    |  |  |  |  |  |  |
| 100.       | The strength of a brazed joint                                                                               |            |                               |                            |    |  |  |  |  |  |  |
|            | (A) decreases with increase in gap bet                                                                       |            |                               |                            |    |  |  |  |  |  |  |
|            | <ul><li>(B) increases with increase in gap between</li><li>(C) decreases up to certain gap between</li></ul> |            |                               |                            |    |  |  |  |  |  |  |
|            | (D) increases up to certain gap between                                                                      |            |                               | •                          |    |  |  |  |  |  |  |
| 101.       | In orthogonal cutting, the feed is 0.5                                                                       | mm         | at a cutting sr               | peed of 2 m/sec. If the ch | in |  |  |  |  |  |  |
|            | thickness is 0.75 mm, the chip velocity                                                                      |            | 0 1                           |                            | -r |  |  |  |  |  |  |
|            | (A) 1.33 m/sec (B) 2 m/sec                                                                                   | (C)        | 2.5 m/sec                     | (D) 3 m/sec                |    |  |  |  |  |  |  |
| 102.       | The percentage of total energy dissipate                                                                     | d due      | to friction at the            | e tool chip interface is   |    |  |  |  |  |  |  |
|            | (A) 30 (B) 42                                                                                                | (C)        | 58                            | (D) 70                     |    |  |  |  |  |  |  |
| 103.       | The indexing of the turret in a single spi                                                                   | indle la   | athe is done usi              | ng                         |    |  |  |  |  |  |  |
|            | (A) Geneva mechanism                                                                                         | (B)        |                               | awl mechanism              |    |  |  |  |  |  |  |
|            | (C) Rack and pinion mechanism                                                                                | (D)        | Whit worth m                  | echanism                   |    |  |  |  |  |  |  |
| Set -      | $oxedsymbol{A}$                                                                                              | 13         |                               | N                          | 1E |  |  |  |  |  |  |

| 104.  |                        | tool life test, on the contract that the contract to the contract the contract to the contract t |                               | -                                                                                         | spee           | d reduces the                | tool li                                              | ife to one fourth o                                       | f the |  |  |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|----------------|------------------------------|------------------------------------------------------|-----------------------------------------------------------|-------|--|--|
|       | (A)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)                           |                                                                                           | (C)            | 1/4                          | (D)                                                  | 1/7                                                       |       |  |  |
| 105.  | degre                  | ee of freedom,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | where                         | the value of 'n                                                                           | i' is          | ·                            |                                                      | ict the work piece in                                     | n 'n' |  |  |
|       | (A)                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B)                           | 8                                                                                         | (C)            | 9                            | (D)                                                  | 12                                                        |       |  |  |
| 106.  | of the                 | e hole is indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ted by                        |                                                                                           |                |                              |                                                      | he position of toler                                      | ance  |  |  |
| 107.  | ` /                    | Letter G  angle measuren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ` /                           | Letter f<br>metrology, th                                                                 | (C) ne foll    |                              | , ,                                                  | Number 8 sed in conjunction                               | with  |  |  |
|       |                        | other sine bar and V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /ernier                       | caliners                                                                                  | (B)            | hevel protract               | or and                                               | l slin gange                                              |       |  |  |
|       | (C)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | _                                                                                         | (D)            | -                            | protractor and slip gauge<br>ar and bevel protractor |                                                           |       |  |  |
| 108.  | the b<br>then<br>limit | ore are 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm and is 25.                 | nd 25.021 resp                                                                            | pectiv         | ely. When the bore is design | bore                                                 | er (maximum) limi is designated as 25 as 25H6, then the u | 5H8,  |  |  |
| 109.  | The g                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ance th                       | nat does not ne                                                                           | ed a c         | latum for its sp             | ecific                                               | ation is                                                  |       |  |  |
|       | (A)<br>(C)             | Concentricity<br>Perpendicular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | itv                           |                                                                                           | (B)<br>(D)     | Run out<br>Flatness          |                                                      |                                                           |       |  |  |
| 110.  | ` '                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                             | epper motor w                                                                             | ` ′            |                              | 6 degr                                               | rees drives a lead so                                     | crew  |  |  |
|       | with                   | pitch of 2 mm.<br>10 microns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The b                         |                                                                                           |                | this drive is                | (D)                                                  | 100 microns                                               |       |  |  |
| 111.  | ` /                    | nining of comp<br>Simultaneous<br>Simultaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lex sha<br>contro<br>contro   | apes on CNC not of x, y, z axes of x, y, z axes                                           | nachii<br>es   |                              |                                                      | 200 1110                                                  |       |  |  |
| 112.  | For g (A) (B) (C) (D)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oints o<br>ontrol j           | on the surface                                                                            | ace            | ontrol points                |                                                      |                                                           |       |  |  |
| 113.  | Cellu (A) (B) (C) (D)  | one-off produ<br>production wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ction i<br>ction o<br>th simi | suitable for<br>n large volume<br>of several varie<br>ilar features m<br>lucts in large v | ties<br>ade in |                              |                                                      |                                                           |       |  |  |
| Set - | A                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                           | 14             |                              |                                                      |                                                           | ME    |  |  |

|      | quan                                                                                                                           | tity                                                                                                |                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                               |                                                                                  |                                                           |                                     |                                                            |                                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|------------------------------------------------------------|--------------------------------------------------------|
|      | (A)                                                                                                                            |                                                                                                     | s unchang                                                                         | ed                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)                                                                     |                                                                               | eased by                                                                         | factor                                                    | of $\sqrt{2}$                       |                                                            |                                                        |
|      | (C)                                                                                                                            | is doub                                                                                             | led                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D)                                                                     | is h                                                                          | alved                                                                            |                                                           |                                     |                                                            |                                                        |
| 115. | carry                                                                                                                          | ring cost<br>time the                                                                               | of ₹ 100<br>e compan                                                              | unit-y                                              | ear. If the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stock                                                                   | out<br>e saf                                                                  | costs are                                                                        | estim                                                     | ated to                             | be nea                                                     | order, and<br>arly ₹ 400<br>rying cost                 |
|      | ` '                                                                                                                            |                                                                                                     | •                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                     |                                                                               |                                                                                  | , ,                                                       |                                     |                                                            |                                                        |
| 116. |                                                                                                                                |                                                                                                     | _                                                                                 | asseml                                              | bly line is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | -                                                                             |                                                                                  |                                                           |                                     |                                                            |                                                        |
|      | (A)                                                                                                                            | Produc                                                                                              | •                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)                                                                     |                                                                               | cess layo                                                                        |                                                           |                                     |                                                            |                                                        |
|      | (C)                                                                                                                            | Manua                                                                                               | i iayout                                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D)                                                                     | FIXe                                                                          | ed layout                                                                        |                                                           |                                     |                                                            |                                                        |
| 117. | Prod<br>from                                                                                                                   |                                                                                                     | low analy                                                                         | sis (PF                                             | FA) is a m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nethod                                                                  | l of i                                                                        | dentifyin                                                                        | g part                                                    | famili                              | es that                                                    | uses data                                              |
|      | (A)                                                                                                                            | Engine                                                                                              | ering drav                                                                        | vings                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)                                                                     | Pro                                                                           | duction s                                                                        | chedul                                                    | e                                   |                                                            |                                                        |
|      | (C)                                                                                                                            | Bill of                                                                                             | materials                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D)                                                                     | Rou                                                                           | ite sheets                                                                       |                                                           |                                     |                                                            |                                                        |
| 119. | rixed varia per p wish choo (A)  A du (A) (C)                                                                                  | l cost of<br>ible cost<br>biece. Pro-<br>es to pro-<br>se<br>Process<br>mmy ac<br>Precedo<br>Resour | ₹ 20 and of Rs. 1 pocess IV I oduce 100 s I (E tivity is usence relative restrict | variable per pieces pieces  Pro  sed in Pro  onship | e cost of the cost | ₹ 3 per<br>s III ha<br>₹ 10 ar<br>pmpon<br>(C)<br>/ork to<br>(B)<br>(D) | r piece<br>as fix<br>ad vari<br>ent, f<br>Prod<br>Prod<br>Nece<br>Nece<br>Res | ce. Proces ed cost of riable cost from eco cess III cribe eessary tii ource idle | ss II ha<br>of ₹ 40<br>st of ₹<br>nomic<br>(D)<br>me del. | and va<br>4 per p<br>point<br>Proce | I cost of<br>ariable of<br>piece. If<br>of view<br>less IV | ocess I has f ₹ 50 and cost of ₹ 2 f company it should |
| 120. | The project activities, precedence relationships and durations are described in the table. The critical path of the project is |                                                                                                     |                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                               |                                                                                  |                                                           |                                     |                                                            |                                                        |
|      |                                                                                                                                |                                                                                                     |                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                               |                                                                                  |                                                           |                                     |                                                            |                                                        |
|      |                                                                                                                                |                                                                                                     | Activ                                                                             | rity                                                | Prece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | edence                                                                  | e                                                                             | Duration                                                                         |                                                           | day)                                |                                                            |                                                        |
|      |                                                                                                                                |                                                                                                     | P                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                       |                                                                               |                                                                                  | 3                                                         |                                     | -                                                          |                                                        |
|      |                                                                                                                                |                                                                                                     | Q<br>R                                                                            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u><br>P                                                           |                                                                               |                                                                                  | 5                                                         |                                     | -                                                          |                                                        |
|      |                                                                                                                                |                                                                                                     | S                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                               |                                                                                  | 5                                                         |                                     | 1                                                          |                                                        |
|      |                                                                                                                                |                                                                                                     | T                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q<br>, S                                                                |                                                                               |                                                                                  | 7                                                         |                                     | 1                                                          |                                                        |
|      |                                                                                                                                |                                                                                                     | U                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , S                                                                     |                                                                               |                                                                                  | 5                                                         |                                     | 1                                                          |                                                        |
|      |                                                                                                                                |                                                                                                     | V                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>, 5</u><br>T                                                         |                                                                               |                                                                                  | 2                                                         |                                     | 1                                                          |                                                        |
|      |                                                                                                                                |                                                                                                     | W                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                       |                                                                               |                                                                                  | 10                                                        |                                     | 1                                                          |                                                        |
|      | (A)                                                                                                                            | P-R-T-                                                                                              |                                                                                   |                                                     | S-T-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C)                                                                     | P-R                                                                           | -U-W                                                                             | (D)                                                       | Q-S-                                | u-W                                                        |                                                        |
|      | ` /                                                                                                                            | -                                                                                                   | (-                                                                                | /                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ - /                                                                   |                                                                               |                                                                                  | \ /                                                       |                                     | •                                                          |                                                        |

114. If the demand for an item is doubled and the ordering cost halved, the economic order

Set - A 15 ME

### **SPACE FOR ROUGH WORK**

#### MECHANICAL ENGINEERING (ME) SET-A

| Question No | Answer | Question No | Answer |
|-------------|--------|-------------|--------|
| 1           | D      | 61          | Α      |
| 2           | Α      | 62          | C      |
| 3           | С      | 63          | D      |
| 4           | D      | 64          | Α      |
| 5           | В      | 65          | С      |
| 6           | С      | 66          | Α      |
| 7           | Α      | 67          | С      |
| 8           | D      | 68          | Α      |
| 9           | Α      | 69          | D      |
| 10          | Α      | 70          | Α      |
| 11          | С      | 71          | В      |
| 12          | С      | 72          | С      |
| 13          | В      | 73          | С      |
| 14          | D      | 74          | Α      |
| 15          | В      | 75          | Α      |
| 16          | С      | 76          | D      |
| 17          | В      | 77          | В      |
| 18          | С      | 78          | Α      |
| 19          | В      | 79          | В      |
| 20          | Α      | 80          | D      |
| 21          | С      | 81          | C      |
| 22          | Α      | 82          | D      |
| 23          | С      | 83          | D      |
| 24          | Α      | 84          | В      |
| 25          | В      | 85          | C      |
| 26          | С      | 86          | A      |
| 27          | D      | 87          | D      |
| 28          | Α      | 88          | В      |
| 29          | С      | 89          | В      |
| 30          | В      | 90          | A      |
| 31          | В      | 91          | D      |
| 32          | В      | 92          | C      |
| 33          | D      | 93          | C      |
| 34          | Α      | 94          | A      |
| 35          | D      | 95          | C      |
| 36          | Α      | 96          | D      |
| 37          | В      | 97          | D      |
| 38          | С      | 98          | C      |
| 39          | С      | 99          | C      |
| 40          | С      | 100         | D      |

| 41 | С | 101 | A |
|----|---|-----|---|
| 42 | В | 102 | A |
| 43 | Α | 103 | A |
| 44 | С | 104 | A |
| 45 | Α | 105 | C |
| 46 | В | 106 | A |
| 47 | Α | 107 | C |
| 48 | D | 108 | D |
| 49 | С | 109 | D |
| 50 | Α | 110 | A |
| 51 | D | 111 | C |
| 52 | В | 112 | C |
| 53 | Α | 113 | C |
| 54 | D | 114 | A |
| 55 | С | 115 | C |
| 56 | В | 116 | A |
| 57 | Α | 117 | В |
| 58 | D | 118 | В |
| 59 | В | 119 | A |
| 60 | В | 120 | D |
|    |   |     |   |