Booklet No. :

MT - 16 Metallurgy

Duration of Test : 2 Hours

Max. Marks: 120

Hall Ticket No.

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

METALLURGY (MT)

- 1. If 1,2 and 3 are the eigen values of A, then the eigen values of transpose of 2A+I are (A) 1/3,1/5,1/3 (B) 2,4,6 (C) 3,5,7 (D) 1,3,5
- 2. A consistent non-homogeneous linear system AX = B has unique solution if
 - (A) rank of A is equal to the number of unknowns
 - (B) rank of A is less than the number of unknowns
 - (C) determinant of A is zero
 - (D) determinant of A is non zero

3. The particular integral of the differential equation $(D^3 - D)y = e^x + e^{-x}$, where $D = \frac{d}{dx}$ is

(A)
$$\frac{1}{2}(e^{x} + e^{-x})$$

(B) $\frac{1}{2}x(e^{x} + e^{-x})$
(C) $\frac{1}{2}x^{2}(e^{x} + e^{-x})$
(D) $\frac{1}{2}x^{2}(e^{x} - e^{-x})$

4. The Laplace transform of $t^2 e^{-t}$ is

(A)
$$\frac{2}{s^3}$$
 (B) $\frac{2}{(s+1)^3}$ (C) $\frac{1}{(s-1)^2}$ (D) $s^2 e^{-s}$

5. The differential equation of a two dimensional heat equation is

(A)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
 (B) $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$
(C) $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} \right)$ (D) $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)$

- 6. If $y'=x+y^2$ and y(0)=1 then y(1.1) by Euler's method is (A) 1.1 (B) 0.1 (C) 1.11 (D) 1.011
- 7. The coefficient of correlation lies in the interval (A) (-1,0) (B) (0,1) (C) (-1,1) (D) (0,2)

8. The iterative scheme
$$x_{n+1} = \phi(x_n)$$
 converges if

- (A) $-1 \le \phi'(x) \le 1$ (B) $|\phi'(x) \le 0|$
- (C) $|\phi'(x)| \le 1$ (D) $|\phi'(x) \le 1|$

Set - A

).	n j	(x) - x + x sat		agrange Mean	value		2] at	c, then
	(A)	c = 1.5	(B)	c = 1	(C)	c = 0	(D)	c = 2
10.	The	function $f(x, y)$	(y) = xy	$y + (\frac{1}{x} + \frac{1}{y})$ is n	ninimu	um at the point		
	(A)	(1,1)	(B)	(0,1)	(C)	(1,2)	(D)	(0,0)
11.	The	magnitude of g	rain b	oundary energ	y is fu	nction of		
	(A)	total interfacia	al ene	rgy	(B)	total boundary	y area	
	(C)	degree of mis	-orien	tation	(D)	None of these	;	
12.	Redu	ucing gas used	in red	ucibility test is				
	(A)	CO_2	(B)	СО	(C)	$CO_2 + N_2$	(D)	both (B) and (C)
13.	Solu	tion lose reaction	on is					
	(A)	$\{ CO_2 \} + < C$	>g = 2	2 {CO}	(B)	$g+\{CO\}$	=2{C	O_2
	(C)	2{ CO} = < C	C >g +	$\{ CO_2 \}$	(D)	None of these	;	
14.	Bou	douard equilibr	ium re	eaction is				
	(A)	$\{ CO_2 \} + < C$	>g = 2	2 {CO}	(B)	$2\{CO\} = < C$	>g +	$\{ CO_2 \}$
	(C)	$2 < C > g + \{O_2$	}=2{0	CO}	(D)	None of these	;	
15.	Nani	man reversion 1	eactic	on is				
	(A)	$2\{CO\} = < C$	>g +	$\{ CO_2 \}$	(B)	$< C > g + \{O_2\}$	={CO	2}
	(C)	$< C >g+\{CO\}$	}=2{C	O_2	(D)	None of these	;	
16.	Oxy	gen potential of	f the g	as phase				
	(A)	$\frac{\text{CO}_2}{\text{CO}}$	(B)	$\frac{CO}{CO}$	(C)	$\frac{\mathrm{H}}{\mathrm{H}}$	(D)	$\frac{0}{0}$
						2		~ ₂
17.	At th	ne temperature	670 ° (C, the oxygen p	otenti	ial, i.e. $\frac{CO}{CO_2}$ is		
	(A)	0	(B)	2	(C)	1	(D)	3
18.	If co	ke burned by a	ir alor	ne in tuyers reg	ion, it	generates one	unit o	f
	(A)	CO ₂	(B)	H ₂	(C)	СО	(D)	O ₂
Set -	A				3			

If $f(x) = x + x^2$ satisfy Lagrange Mean Value theorem in [0, 2] at c. then 9.

Wel	d spatter defect	in we	lding is due to					
(A)	too high weld	ing cu	irrent	(B)	too low welding current			
(C)	low voltage			(D)	too high volta	age		
In H	yL processes, t	he cat	alyst used is					
(A)	W_2	(B)	H_2	(C)	O ₂	(D)	CH ₄	
The	solid solubility	of ox	ygen in pure ir	on is				
(A)	0.3%	(B)	0.03%	(C)	0.003%	(D)	0.0003%	
Deoxidiser used in the steel making in the form of								
(A)	sinter	(B)	pellet	(C)	pure form	(D)	ferro alloys	
The amount of nitrogen dissolved in iron under equilibrium condition is given by								
(A)	Grahm's law	(B)	Charle's law	(C)	Boyle's law	(D)	Sievert's law	
Refining by oreing is								
(A) an endothermic process								
(B)	(B) an exothermic process							
(C)	(C) an endothermic or exothermic process, depending on the furnace							
(D)	None of these	,						
The	oxidising abilit	y of tl	he slag in AOH	is du	e to			
(A)	SiO ₂	(B)	O_2	(C)	FeO	(D)	P_2O_6	
As t	he impurities ar	e oxic	lised, the melti	ng poi	int of the iron			
(A)	increases							
				(B)	decreases			
(C)	remains consta	ant		(B) (D)	decreases uncertain			
(C) Gibł	remains consta o's phase rule is	ant 5 giver	n by the expres	(B) (D)	decreases uncertain n which F is eq	ual to		
(C) Gibb (A)	remains consta o's phase rule is C + P	ant s giver (B)	n by the expres C – P	(B) (D) sion in (C)	decreases uncertain h which F is eq C + P - 2	ual to (D)	C – P + 2	
(C) Gibt (A) Cher	remains consta o's phase rule is C + P mical potential	ant 5 giver (B) of a c	n by the expres C – P omponent 1 in	(B) (D) sion in (C) a bina	decreases uncertain h which F is eq C + P - 2 ary solution car	ual to (D) 1 be de	C - P + 2	
(C) Gibt (A) Chen (A)	remains constant o's phase rule is C + P mical potential $\left(\frac{\partial A}{\partial n_1}\right)_{T,V,n_2}$	ant (B) of a c (B)	the by the express C - P component 1 in $\left(\frac{\partial U}{\partial n_1}\right)_{S,V,n_2}$	(B) (D) sion in (C) a bina (C)	decreases uncertain h which F is eq C + P - 2 ry solution car $\left(\frac{\partial H}{\partial n_1}\right)_{T,S,n_2}$	ual to (D) 1 be de (D)	C - P + 2 efined as $\left(\frac{\partial G}{\partial n_1}\right)_{T,P,n_2}$	
	Wele (A) (C) In H (A) The (A) The (A) (A) (C) (D) The (A) (C) (D) The (A)	 Weld spatter defect (A) too high weld (C) low voltage In HyL processes, t (A) W₂ The solid solubility (A) 0.3% Deoxidiser used in (A) sinter The amount of nitro (A) Grahm's law Refining by oreing (A) an endotherm (B) an exothermic (C) an endotherm (D) None of these The oxidising abilit (A) SiO₂ As the impurities an (A) increases 	Weld spatter defect in we (A) too high welding cu (C) low voltage In HyL processes, the cat (A) W_2 (B) The solid solubility of ox (A) 0.3% (B) Deoxidiser used in the sta (A) sinter (B) The amount of nitrogen d (A) Grahm's law (B) Refining by oreing is (A) an endothermic proc (B) an exothermic proc (C) an endothermic or e (D) None of these The oxidising ability of th (A) SiO ₂ (B) As the impurities are oxid (A) in areas	Weld spatter defect in welding is due to (A) too high welding current (C) low voltage In HyL processes, the catalyst used is (A) W_2 (B) H_2 The solid solubility of oxygen in pure in (A) 0.3% (B) 0.03% Deoxidiser used in the steel making in th (A) sinter (B) pellet The amount of nitrogen dissolved in iron (A) Grahm's law (B) Charle's law Refining by oreing is (A) an endothermic process (B) an exothermic process (C) an endothermic or exothermic pro- (D) None of these The oxidising ability of the slag in AOH (A) SiO ₂ (B) O ₂ As the impurities are oxidised, the melti-	Weld spatter defect in welding is due to (A) too high welding current (B) (C) low voltage (D) In HyL processes, the catalyst used is (A) W_2 (B) H_2 (C) The solid solubility of oxygen in pure iron is (A) 0.3% (B) 0.03% (C) Deoxidiser used in the steel making in the form (A) sinter (B) pellet (C) The amount of nitrogen dissolved in iron under (A) Grahm's law (B) Charle's law (C) Refining by oreing is (A) an endothermic process (B) an exothermic process (C) an endothermic or exothermic process, of (D) None of these The oxidising ability of the slag in AOH is du (A) SiO ₂ (B) O ₂ (C) As the impurities are oxidised, the melting point (A) the stage in the steel making in the form (A) SiO ₂ (B) O ₂ (C)	Weld spatter defect in welding is due to (A) too high welding current (B) too low weld (C) low voltage (D) too high volta In HyL processes, the catalyst used is (A) W_2 (B) H_2 (C) O_2 The solid solubility of oxygen in pure iron is (A) 0.3% (B) 0.03% (C) 0.003% Deoxidiser used in the steel making in the form of (A) sinter (B) pellet (C) pure form The amount of nitrogen dissolved in iron under equilibrium of (A) Grahm's law (B) Charle's law (C) Boyle's law Refining by oreing is (A) an endothermic process (B) an exothermic process (C) an endothermic or exothermic process, depending on the (D) None of these The oxidising ability of the slag in AOH is due to (A) SiO ₂ (B) O ₂ (C) FeO As the impurities are oxidised, the melting point of the iron	Weld spatter defect in welding is due to (A) too high welding current (B) too low welding cur (C) low voltage (D) too high voltage In HyL processes, the catalyst used is (A) W_2 (B) H_2 (C) O_2 (D) The solid solubility of oxygen in pure iron is (A) 0.3% (B) 0.03% (C) 0.003% (D) Deoxidiser used in the steel making in the form of (A) sinter (B) pellet (C) pure form (D) The amount of nitrogen dissolved in iron under equilibrium condit. (A) Grahm's law (B) Charle's law (C) Boyle's law (D) Refining by oreing is (A) an endothermic process (B) an exothermic process (C) an endothermic or exothermic process, depending on the fur (D) None of these The oxidising ability of the slag in AOH is due to (A) SiO ₂ (B) O ₂ (C) FeO (D) As the impurities are oxidised, the melting point of the iron	

29.	A number of a solid state phase transformations follow a sigmoidal pattern. In, these cases, at any time the fraction transformed can be expressed as follows								
	(A)	$1-\exp(-a^2t)$	(B)	$1 + \exp(-a^2t)$	(C)	$\exp(a^2t)$	(D)	$\exp(a^2t)-1$	
30.	A pe	eritectic reaction	n is						
	(A)	$\alpha + \beta \rightarrow \gamma$	(B)	$L + \alpha \rightarrow \beta$	(C)	$L_1 + L_2 \rightarrow \beta$	(D)	$L + \alpha + \beta {\rightarrow} \gamma$	
31.	Proc	luct of the first	break	down of the ing	got in	rolling is			
	(A)	billet	(B)	bloom	(C)	slab	(D)	plate	
32.	The	delivery speed	of fiv	e stand mill wi	ll be				
	(A)	50 m/s	(B)	30 m/s	(C)	40 m/s	(D)	60 m/s	
33.	Cold	l rolling of cop	per all	oys uses					
	(A) High speed four high tandem mills								
	(B) Three high tandem mills								
	(C) Fight speed live high tandem hints(D) None of these								
34.	For	ferrous drawing	g, the	drawing speed	of mu	ltiple die mach	ine is	20	
	(A)	5 11/8	(D)	10 11/8	(C)	20 11/8	(D)	50 III/S	
35.	Сор	e in foundry pr	actice	refers to					
	(A)	middle portio	n of tl	ne moulding bo	X				
	(B)	bottom portio	on of t	he moulding bo	X				
	(C)	coating on the	e mou	ld face					
	(D)	top half of mo	ould b	OX					
36.	The	rate of burning	of co	ke in blast furn	ace is	directly propo	rtiona	l to	
	(A)	the area of fu	el exp	osed to the blas	st				
	(B)	the temperatu	ire and	l pressure of th	e blas	t			
	(C)	the affinity of	f the p	articular type o	of carb	on for oxygen			
	(D)	All the above							
37.	Ball	s for bearing ar	e mad	e of					
	(A)	cast iron			(B)	stainless steel	l		
	(C)	carbon-chron	ne stee	el	(D)	mild steel			
Set -	A				5				MT

38.	Reducing agent used in the Rotary Kiln process is							
	(A)	coke			(B)	Aluminium		
	(C)	metallurgical	coal		(D)	CO_2		
39.	The	machinability o	of the	steel is increas	ed by			
021	(A)	silicon and su	lphur		eu og			
	(R)	sulphur gran	hite ar	nd aluminium				
	(\mathbf{C})	b) phosphorous and aluminium						
	(\mathbf{C})	phosphorous	lead a	and sulphur				
	(D)	phosphorous,	icau e	and surprise				
40.	The	refining reaction	on dur	ing steel makin	ıg take	es place at the		
	(A)	gas-metal inte	erface		(B)	gas-gas interf	ace	
	(C)	gas-slag inter	face		(D)	slag-metal int	erface	
41.	Coin	ing is the oper	ation o	of				
	(A)	cold forging	(B)	hot forging	(C)	cold extrusion	n (D)	piercing
42.	Sulphur in pig iron tends to make it							
	(A)	hard	(B)	tough	(C)	malleable	(D)	ductile
40				•				
43.	The	bonding in sem	ncond	uctor is				
	(A)	101110	(B)	co-ordinate	(C)	covalent	(D)	metallic
44.	Blas	t furnaces use v	which	of the followin	ng as fi	uel?		
	(A)	Coke	(B)	Coal	(C)	Diesel	(D)	Liquid oxygen
45.	Whie	ch of the follow	ving s	teel has almost	zero t	emperature co	efficie	nt?
	(A)	Platinum stee	l (B)	Invar steel	(C)	Stainless stee	l (D)	Cobalt steel
46.	Whie	ch of the follow	ving p	rocess is differ	ent fro	om rest of the r	process	ses?
	(A)	Shot peening	01		(B)	Cold extrusio	n	
	(C)	Sand blasting			(D)	Drop forging		
47	Ŧ	1 1 . •	.1	1 6		, .		
47.	In sc	rew dislocation	n, the	airection of mo	oveme	nt 1s	, .1	, 1 • .•
	(A)	parallel to the	stress	s direction	(B)	perpendicular	to the	e stress direction
	(C)	at 60° to the s	stress	direction	(D)	None of these	2	
Set -	A				6			

48.	Ator	nic packing fac	tor fo	r FCC						
	(A)	0.68	(B)	0.72	(C)	0.74	(D)	0.82		
40	Rati	o of long unit c	ell ler	orth to short ur	nit cell	length (c/a) for	r HCE	Die		
ч <i>у</i> ,	(A)	1.633	(B)	1.733	(C)	0.633	(D)	0.733		
			~ /							
50.	Diff	usion coefficien	nt incr	eases with						
	(A)	(A) decreasing temperature				increasing temperature				
	(C)	diffusion flux	_		(D)	None of these	2			
51.	Nun	nber of slip syst	tem of	BCC in the sl	ip plaı	ne (321) is				
	(A)	6	(B)	12	(C)	24	(D)	8		
52.	2. The driving force for the recrystallization is									
	(A) (B)	dislocation m	ovem	ent						
	(C)	internal energ	gy bety	ween the strain	ed and	l unstrained ma	aterial			
	(D)	None of the a	bove							
	_									
53.	Recr	rystallization pr	oceed	ls more rapidly	(\mathbf{D})	- 11				
	(\mathbf{A})	metals	n both	(\mathbf{A}) and (\mathbf{B})	(D)	alloys None of these	2			
	(C)	at same rate n	n ootn	(\mathbf{A}) and (\mathbf{D})	(D)	i vone of these				
54.	For	alloys, recrysta	llizatio	on temperature	e is					
	(A)	0.2 T _m	(B)	0.5 T _m	(C)	0.7 T _m	(D)	0.9 T _m		
55	Doly	mon with fillon	:							
55.	(A)	fiber reinforc	is ed.cor	mosite						
	(B)	particle reinfo	orced o	composite						
	(C)	dispersion – s	strengt	thened compos	ite					
	(D)	concrete								
56	The	critical fiber 1	onath	that is nacess	arv fo	r offective str	anothe	ming of the composite		
50.	mate	erials depend of	n	that is increase	ary 10		ingtill	ming of the composite		
	(A)	fiber diameter	r							
	(B)	its ultimate st	rength	1						
	(C)	the interfacial	l fiber	- matrix bond	streng	gth				

(D) All of the above

Set - A

- 57. Plastic deformation operation is carried out at temperature
 - (A) above recrystallization temperature
 - (B) below recrystallization temperature
 - (C) 20 °C below recrystallization temperature
 - (D) None of these
- **58.** For coordination number of four, anion sits at the centre of _____where corners are occupied by cation.
 - (A) Cube (B) Tetrahedron (C) Triangle (D) Octahedron
- **59.** Presence of sulphur makes steel brittle. Its effect can be reduced by adding
 - (A) copper (B) silicon (C) magnesium (D) manganese
- **60.** The corrosion rate increases with
 - (A) increasing temperature(B) decreasing temperature(C) remains constant(D) uncertain
- **61.** The stacking sequence of HCP is
 - (A) AAA BBB AAA (B) AB ABAB
 - (C) ABC ABCABC (D) BA BABABA

62. The strength of grain boundary and grains are equal

- (A) at equicohesive temperature (B) above equicohesive temperature
- (C) below equicohesive temperature (D) at recrystallization temperature

63. For better fluidity, which of the following is added in the blast furnace?

- (A) Phosphorus (B) Carbon (C) Manganese (D) Sulphur
- **64.** Stress corrosion occurs due to
 - (A) tensile stress
 - (B) compression stress
 - (C) shear stress
 - (D) combined action of tensile stress and corrosive environment
- Set A

65.	Siev	ert's law deals	with _	·					
	(A)	dissolution o	f gases	s in metals	(B)	dissolution of	f meta	ls in gases	
	(C)	diffusion of	ions in	solutions	(D)	diffusion of a	toms	in solutions	
66.	Rein	forcing bars u	sed in	RCC slabs ar	e made	of			
	(A)	medium carb	on ste	els	(B)	cast iron			
	(C)	alloy steels			(D)	wrought iron			
67.	Grea	ater the amoun	t of de	formation					
	(A)	lower is the	recryst	allization tem	perature	e			
	(B) high is the recrystallization temperature								
	(C) sometimes higher and sometimes lower depends on the material								
	(D)	(D) None of the above							
68.	For	diffuse necking	g in stı	ength formin	g, the ul	ltimate strain is	s equa	l to	
	(A)	n	(B)	2n	(C)	3n	(D)	4n	
69.	For	a plastic mater	ial, the	e Poisson's ra	tio is				
	(A)	0.33	(B)	0.5	(C)	0.42	(D)	0.28	
70.	The	dislocation of	low m	obility that is	produce	ed by a disloca	tion r	k ⁿ is called a	
	(A)	dislocation c	limb		(B)) glissile			
	(C)	sessile			(D)	None of these	e		
71.	Pear	lite is the com	binatio	on of					
	(A)	ferrite and ce	ementi	te	(B)	ferrite and irc	on graj	phite	
	(C)	pearlite and	ferrite		(D)	cementite and	l gam	ma iron	
72.	Recr	ystallization to	empera	ature can be lo	owered	by			
	(A)	grain refinen	nent		(B)	working at lo	wer te	emperature	
	(C)	purification of	of met	al	(D)	All the above	;		
73.	Basi	c solution is o	ne whi	ch has pH va	lue				
	(A)	less than 7	(B)	equal to 7	(C)	greater than 7	7 (D)	None of these	
Set -	A				9				
- · L									

- 74. Hardenability of steel
 - (A) is the depth of penetration obtained by vickers test.
 - (B) is the ability to withstand shocks.
 - (C) is the ability of steel resist abrasion, wear and penetration.
 - (D) is the property which determines the depth of the hardened zone induced by quenching.

75. Which of the following element is added to steel to import high strength and toughness ?(A) Magnesium (B) Manganese (C) Sulphur (D) Tungsten

76. Which of the following material has more shrinkage allowance ?(A) Lead (B) Cast iron (C) Aluminium alloy (D) Brass

77. Which one of the following has the highest specific strength of all structural materials ?

- (A) Magnesium alloys (B) Titanium alloys
- (C) Magnetic steel alloys (D) None of the above
- **78.** White metal contains
 - (A) alloy of tin, lead and cadmium
 - (C) malleable cast iron and silver (D) 88% copper and 10% tin and rest zinc

(B) Silver and Chromium

- 79. Addition of lead and bismuth to aluminium results in
 - (A) Improvement of corrosion resistance
 - (B) Improving the casting characteristics
 - (C) Improving machinability
 - (D) None of these
- 80. The alloy used for making electrical resistance and heating element is(A) Invar(B) Elinvar(C) Nichrome(D) Manganese
- **81.** The mechanical properties of steel castings can be improved by which of the following heat treatment processes?
 - (A) Phase annealing (B) Full annealing
 - (C) Normalizing (D) Tempering
- **82.** Which of the following elements is alloyed with high carbon tool steels to increase the resistance to shock?
 - (A) Carbon (B) Tungsten (C) Nickel (D) Vanadium

Set - A

10

83.	Hot	working operat	ion is	carried out				
	(A)	Recrystallizat	ion te	mperature				
	(B)	Near plastic s	tage to	emperature				
	(C)	Below recryst	allizat	tion temperatu	re			
	(D)	Above recryst	talliza	tion temperatu	re			
84.	The	imperfection in	the c	rystal structure	of me	etal is called		
	(A)	slip	(B)	impurity	(C)	dislocation	(D)	cleavage
85.	Duri	ng LD blow in	steel	making the imp	ourity	that gets remov	ved fir	st is
	(A)	Carbon	(B)	Phosphorous	(C)	Manganese	(D)	Silicon
86.	Weld spatter defect in welding is due to							
	(A)	too high weld	ing cu	irrent				
	(B)	too low weldi	ng cu	rrent				
	(C)	low voltage						
	(D)	too high volta	ige					
87.	For s	super plasticity	formi	ng, strain rate	is equa	al to		
	(A)	0.1 s ⁻¹	(B)	$0.01 \mathrm{s}^{-1}$	(C)	0.001 s ⁻¹	(D)	0.0001 s^{-1}
88.	Dyna	amic recovery i	in met	al occurs havir	ng			
	(A)	Low stacking	fault	energy	(B)	High stacking	g fault	energy
	(C)	There is no ef	fect		(D)	None of these	•	
89.	In B	rinell hardness	testing	g the minimum	thick	ness of the spe	cimen	should be
	(A)	Less than 5 tin	mes th	ne depth of imp	oressio	n		
	(B)	Less than 10 t	times	the depth of im	pressi	on		
	(C)	Equal to 10 ti	mes tł	ne depth of imp	pressio	n		
	(D)	More than 10	times	the depth of ir	npress	sion		
90.	Defo	ormation band i	s not o	observed in				
	(A)	BCC	(B)	FCC	(C)	HCP	(D)	SC
91.	Tung	gsten filament u	ised ir	electric bulb	is proc	cessed by		
	(A)	Extrusion			(B)	Wire drawing	,	
	(C)	Powder metal	lurgy		(D)	All the above		
Set -	A				11			

The	ductility of a m	nateria	l with work ha	ardenin	ıg					
(A)	Increases			(B)	Decreases					
(C)	Remains unat	fected	1	(D)	Unpredictabl	e				
Whi	ch compound i	n stee	l leads to the I	ntergra	nular fracture	nular fracture ?				
(A)	Oxide	(B)	Carbide	(C)	Sulphide	(D)	Nitrides			
Tran	Transverse cracking occurs due to the presence of									
(A)	N ₂	(B)	S	(C)	Р	(D)	Si			
The elastic stress-strain behaviour of rubber is										
(A)	Non-linear			(B)	No fixed rela	tionsh	ip			
(C)	Plastic			(D)	Linear					
Moh	i's Scale has a 1	ange	of							
(A)	1 to 12			(B)	1 to 15					
(C)	1 to 5			(D)	1 to 10					
In co	ompression, a p	orism o	of brittle mater	rial wil	l break					
(A)	by crushing into thousands of pieces									
(B)	by forming a	bulge								
(C)	by shearing a	long c	blique plane							
(D)	D) in direction perpendicular to application of load									
The surfa	fatigue streng ace by a proces	th of s knov	metal is impr wn as	roved	by setting up	comp	ressive stresses in			
(A)	Lancing	(B)	Spinning	(C)	Hemming	(D)	Shot peening			
A te	st used to deter	mine	the endurance	limit f	or a metal is ki	nown a	as			
(A)	Hardness test	(B)	Creep test	(C)	Fatigue test	(D)	Tensile test			
A				12						
	The (A) (C) Whi (A) Tran (A) The (A) (C) Moh (A) (C) In co (A) (C) (D) The surfa (A) (C) (D)	The ductility of a m (A) Increases (C) Remains unaffective (C) Remains unaffective (A) Oxide Transverse cracking (A) N_2 The elastic stress-stress (A) Non-linear (C) Plastic Moh's Scale has a m (A) 1 to 12 (C) 1 to 5 In compression, a p (A) by crushing in (B) by forming a (C) by shearing a (C) by shearing a (D) in direction per The fatigue strengts surface by a process (A) Lancing A test used to deter (A) Hardness test	The ductility of a materia (A) Increases (C) Remains unaffected Which compound in steel (A) Oxide (B) Transverse cracking occur (A) N_2 (B) The elastic stress-strain b (A) Non-linear (C) Plastic Moh's Scale has a range (A) 1 to 12 (C) 1 to 5 In compression, a prism of (A) by crushing into the (B) by forming a bulge (C) by shearing along of (D) in direction perpend The fatigue strength of surface by a process know (A) Lancing (B) A test used to determine to (A) Hardness test (B)	The ductility of a material with work ha (A) Increases (C) Remains unaffected Which compound in steel leads to the I (A) Oxide (B) Carbide Transverse cracking occurs due to the p (A) N_2 (B) S The elastic stress-strain behaviour of ru (A) Non-linear (C) Plastic Moh's Scale has a range of (A) 1 to 12 (C) 1 to 5 In compression, a prism of brittle material (A) by crushing into thousands of piec (B) by forming a bulge (C) by shearing along oblique plane (D) in direction perpendicular to apple The fatigue strength of metal is imprisurface by a process known as (A) Lancing (B) Spinning A test used to determine the endurance (A) Hardness test (B) Creep test A	The ductility of a material with work hardening (A) Increases (B) (C) Remains unaffected (D) Which compound in steel leads to the Intergration (A) Oxide (B) Carbide (C) Transverse cracking occurs due to the presence (A) N_2 (B) S (C) The elastic stress-strain behaviour of rubber is (A) Non-linear (B) (C) Plastic (D) Moh's Scale has a range of (A) 1 to 12 (B) (C) 1 to 5 (D) In compression, a prism of brittle material will (A) by crushing into thousands of pieces (B) by forming a bulge (C) by shearing along oblique plane (D) in direction perpendicular to application The fatigue strength of metal is improved surface by a process known as (A) Lancing (B) Spinning (C) A test used to determine the endurance limit for (A) Hardness test (B) Creep test (C)	The ductility of a material with work hardening (A) Increases (B) Decreases (C) Remains unaffected (D) Unpredictable Which compound in steel leads to the Intergranular fracture (A) Oxide (B) Carbide (C) Sulphide Transverse cracking occurs due to the presence of (A) N ₂ (B) S (C) P The elastic stress-strain behaviour of rubber is (A) Non-linear (B) No fixed relation (C) Plastic (D) Linear Moh's Scale has a range of (A) 1 to 12 (B) 1 to 15 (C) 1 to 5 (D) 1 to 10 In compression, a prism of brittle material will break (A) by crushing into thousands of pieces (B) by forming a bulge (C) by shearing along oblique plane (D) in direction perpendicular to application of load The fatigue strength of metal is improved by setting up surface by a process known as (A) Lancing (B) Spinning (C) Hemming A test used to determine the endurance limit for a metal is known (A) Hardness test (B) Creep test (C) Fatigue test	The ductility of a material with work hardening (A) Increases (B) Decreases (C) Remains unaffected (D) Unpredictable Which compound in steel leads to the Intergranular fracture ? (A) Oxide (B) Carbide (C) Sulphide (D) Transverse cracking occurs due to the presence of (A) N ₂ (B) S (C) P (D) The elastic stress-strain behaviour of rubber is (A) Non-linear (B) No fixed relationsh (C) Plastic (D) Linear Moh's Scale has a range of (A) 1 to 12 (B) 1 to 15 (C) 1 to 5 (D) 1 to 10 In compression, a prism of brittle material will break (A) by crushing into thousands of pieces (B) by forming a bulge (C) by shearing along oblique plane (D) in direction perpendicular to application of load The fatigue strength of metal is improved by setting up comp surface by a process known as (A) Lancing (B) Spinning (C) Hemming (D) A test used to determine the endurance limit for a metal is known a (A) Hardness test (B) Creep test (C) Fatigue test (D)			

the

- **100.** A test used to determine the behaviour of materials when subjected to high rates of loading, is known as
 - (A) Hardness test (B) Impact test (C) Fatigue test (D) Torsion test
- 101. Fatigue strength of steel can be increased by
 - (A) increasing tensile surface residual stresses
 - (B) increasing the grain size
 - (C) increasing the specimen size
 - (D) increasing compressive surface residual stresses
- **102.** The tensile load-elongation curve of a metal does not describe
 - (A) Work hardening (B) Yield stress
 - (C) Anisotropy index (D) Necking strain
- 103. Mechanical properties of the metal improve in hot working due to
 - (A) Recovery of grains (B) Recrystallization
 - (C) Grain growth (D) Refinement of grain size

104. In general, the draft on castings is of the order of

(A)	1 – 5 mm/m	(B)	5 – 10 mm/m
-----	------------	-----	-------------

- (C) 10 15 mm/m (D) 15 20 mm/m
- **105.** In slush casting process
 - (A) molten metal is fed into the cavity in metallic mould by gravity.
 - (B) metal is poured into die cavity and after a predetermined time the mould is inverted to permit a part of metal still in molten state to flow out of cavity.
 - (C) cavity is filled with a pre calculated quantity of metal and a core or plunger is inserted to force the metal into cavity.
 - (D) metal is forced into mould under high pressure.
- **106.** Radiography technique of detecting defects is based on the principle of

(A) Diffraction (B) Reflection (C) Interference (D) Absorption

Set - A

107. Slag inclusion in casting is a

- (A) surface defect (B) internal defect
- (C) crack (D) notch

108. Semi-centrifugal casting

- (A) is used to ensure purity and density at extremities of a casting.
- (B) is used to cast symmetrical objects.
- (C) is used to obtain high density and pure castings.
- (D) uses heavy cast iron mould to act as chill.
- **109.** Spruce in casting refers to
 - (A) horizontal passage (B) runner
 - (C) riser (D) vertical passage

110. Scales or buckles are the casting defects

- (A) which occur due to some sand shearing from the cope.
- (B) which take the form of internal voids or surface depression due to excessive gaseous material not able to escape.
- (C) which occur due to discontinuity in metal casting resulting from hindered contraction.
- (D) caused by two streams of metals that are too cold to fuse property.

111. Down spruce in casting is given a tapered shape for

- (A) easy flow of molten metal
- (B) easy withdrawal of casting
- (C) preventing aspiration of gases through spruce
- (D) preventing bulging of spruce during poring

112. Cold working process can be applied on the components having diameter upto

(A) 12 mm (B) 25 mm (C) 49 mm (D) 50 mm

- **113.** Pre-heating and post-heating is essential in welding
 - (A) low carbon steel (B) medium carbon steel
 - (C) high carbon steel (D) nickel

 Set - A
 14
 MT

- 114. Hot press forging
 - (A) causes a steadily applied pressure instead of impact force.
 - (B) is used to force the end of a heated bar into a desired shape.
 - (C) is a forging operation in which two halves of a rotating die open and close rapidly while impacting the end of the heated tube or shell.
 - is a forging method for reducing the diameter of a bar and in the process making it (D) longer.

115. In a solid extrusion die, purpose of knock out pin is

- (A) shopping the part to extrude through the hose.
- (B) ejecting the part after extrusion.
- (C) allowing the job to have better surface finish.
- (D) reducing the waste of material.
- 116. In drawing operation the metal flows due to
 - (A) ductility **(B)** work hardening
 - (C) plasticity (D) shearing
- 117. In arc welding, too low welding speed results in
 - (A) wastage of electrode
 - (B) excessive pilling up of weld metal
 - (C) overhauling without penetration edges
 - (D) All of the above

118. In welding magnesium with TIG arc welding

- direct current with reverse polarity (DCRP) is used. (A)
- (B) direct current with straight polarity (DCSP) is used.
- (C) A.C. is used.
- (D) All of the above are used.

119. Porosity of welded joint is due to

- (A) high welding speed (B)
- (C) wrong size of electrode (D)
- 120. The width of heat affected zone is more in
 - (A) plasma arc welding electron beam welding **(B)**
 - (C) electro slag welding (D) electric resistance welding

Set - A

- low welding speed
- poor base metal

SPACE FOR ROUGH WORK

METALLURGY (MT) SET-A

Question No	Answer	Question No	Answer
1	С	61	В
2	А	62	А
3	А	63	С
4	В	64	D
5	В	65	С
6	А	66	А
7	С	67	А
8	D	68	А
9	В	69	В
10	А	70	С
11	С	71	А
12	D	72	D
13	С	73	А
14	С	74	D
15	А	75	В
16	В	76	А
17	С	77	В
18	С	78	С
19	А	79	С
20	А	80	С
21	С	81	А
22	D	82	D
23	D	83	D
24	А	84	С
25	С	85	D
26	А	86	А
27	D	87	В
28	D	88	В
29	В	89	D
30	В	90	С
31	В	91	D
32	В	92	В
33	А	93	D
34	В	94	В
35	D	95	А
36	D	96	D
37	С	97	С
38	С	98	D
39	D	99	С
40	D	100	В

41	А	101	D
42	А	102	С
43	С	103	D
44	А	104	В
45	В	105	В
46	D	106	D
47	В	107	А
48	С	108	А
49	А	109	D
50	В	110	А
51	С	111	С
52	С	112	В
53	А	113	С
54	С	114	А
55	В	115	В
56	D	116	С
57	А	117	D
58	В	118	А
59	D	119	D
60	А	120	С