1. $\iota L + Mm + Nn \rightarrow pP + qQ + rR$ the equilibrium constant for this reaction is

$$(1) K_c = \frac{[P]^p[Q]^q[R]^r}{[L]^t[M]^m[N]^n}$$

$$(2)K_c = \underbrace{[L]^t[M]^m[N]^n}_{[P]^p[Q]^q[R]^r}$$

(3)
$$K_c = [L][M][N]$$

[P][Q][R]

(4)
$$K_c = \underline{\iota mn}$$

2. Due to low ionization potential the alkalimetals are :

- (1) weak oxidizing agent
- (2) strong oxidizing agent
- (3) strong reducing agent
- (4) none of these

3. Current order of radius is:

- $(1) Li^{+}>Na^{+}>K^{+}$
- (2) $K^+ > N^a + > Li^+$
- (3) $Na^{+}>K^{+}>Li^{+}$

(4) all same

4. If there is an uncertainity in the position of an electron is zero then uncertainity in the momentum will be:

- (1) h 2π
- (2) infinite
- (3) $nh/2\pi$
- (4) zero

5. The boiling point of water is high due to :

- (1) high ionic product
- (2) hydrogen bonding
- (3) heavy weight
- (4) high dielectric efficient

6. Elements of the same group are:

- (1) Mg, Ba
- (2) C.S
- (3) H,Be
- (4) As, se

7. $Ch_3COOAg + Br_2 \rightarrow CH_3Br + AgBr + CO_2$. The above reaction is known as

- (1) Hoffmann mustard oil reaction
- (2) Wurtz fitting reaction
- (3) Hunsdiecker reaction
- (4) Volhard zelinsky reaction

8. $1s^2 2s^2p^6 3s^2p^2$ configuration shows the :

- (1) f-flock elements
- (2) p-block elements
- (3) s-block elements
- (4) d-block elements

9. The required condition for precipitation is:

(1) ionic product >(2) saturated solut(3) ionic product (4) dilute solution	ion <k<sub>sp</k<sub>				
10. The molarity of an el		CrO ₄ is	s 1.415 x 1	0 ⁻⁵ M, t	he value of
solubility product wi (1) 2 x 10 ⁻⁸	(2) 2.02 x 10 ⁻¹	12	(3) 2.25 x	x 10 ⁻⁶	$(4) 2x10^{-10}$
11. Lewis acid is : (1) NH ₂ NH ₂	(2) NH ₃	(3) AIC	CI_3 (4	l) H ₂ O	
12. There are three unpa (1) Pauli's law (2) H			_) Stark law
13. The pH values of solution comparision to B will		are 2 a	and 6 resp	. Acid s	trength of A in
(1) 4 times		(3) 10-	4 times	(4	10000 times
14. In which of the follow (1) Mulliken-Barker to (3) Fehling test	(2) Ba (4) Scl	yer test hiff test			
15. Ch ₃ COCI + H ₂ Pd/F (1) Methanol (2) Ad					
16. Removing of sulphur (1) Bessemeerisation	•				nation
17. Ch₃CHO + CH₃MgX (1) 2-propanol	$\frac{\mathbf{H_2Q}}{(2)}$ A here $\frac{\mathbf{H_2Q}}{(2)}$ 1-propano	re A is :	(3) Aceto	one (4) Acetaldehyde
18. Which of the followi (1) Cu ⁺ (2) Fe ⁺		oured s	alt : (4) CO ²⁺		
19. Nitration of the benz (1) Nucleophillic (2) Nucleophillic (3) Electrophillic (4) Electrophillic	substitution addition substitution	ion of :			
20. Which of the following (1) Netrobenzene	ng is most rea (2) Clorobenz		r nitratio (3) Talion) Benzene
21. Coversion of H into (1) Reduction	H ion is a :				

	(2) Free radical(3) Oxidation				
	(4) Fission of h	ydrogen			
		lowing there is a (2) Phenol		(4) Be	nzene
23. W	(1) for pure pre(2) for making(3) to reduce th	•	of OH ion	qualita	ative analysis :
	•	esters by base is (2) Saponifica			
(3)	Dehelogenation	(4) Dehydrogo	enation		
		llowing, oxalic a (2) Glycerol			form formic acid : (4) Acetone
26. M ₂ (1)	$_{\mathbf{x}}\mathbf{A}_{\mathbf{y}} \rightarrow _{\mathbf{x}}\mathbf{M}^{\mathbf{y}+} + \mathbf{y}$ $_{\mathbf{x}}\mathbf{K}_{\mathbf{sp}} = \mathbf{X}^{\mathbf{x}}\mathbf{S}^{\mathbf{x}+\mathbf{y}}$	A^{x-} the true state (2) $K_{sp} = S^{x+y}$	ement for this : (3)K _{sp} =X ^x Y ^y S	reaction x+y	n is : (4) $K_{sp} = S^2$
frı	ictose are conve	llowing enzyme rted into alcoho Kymase (3) Inv	l:		nentation glucose and
(1) (2) (3)	tration of benzo 4-dinitrobenzoio 2,4-dinitrobenzoio 2-nitrobenzoio a 3-nitrobenzoio a	e acid oic acid acid			
29. W	(1) Alkyle helic(2) Compounds	containing oxyg	en	trol :	
	-	dration of alcoh	ols by concentrice (4) All		[2SO₄ is :
		wing forms oily Dimethylamine		_	HNO ₂ : (4) Methylamine
32. Re	educing agents a (1) domates ele (2) forms coval				

33. In acidic medium the (1) +6 to +2			_
the equilibrium cons and 3 mole resp. the	tant is k. If the co	ncentrations ont will be:	a and B are mole each of of A and B will be done 2
35. Which of the followi (1) CH ₃ COOH, C (2) CH ₃ -C≡CH ₂ C (3) CH ₃ CHO, CH (4) CH ₃ CHO, CH	ng are homologous H ₃ COOCH ₃ H ₂ =CH ₂ ₃ CH ₂ CHO		
36. The general formula $(1) C_nH_{2n}$ $(2)C_2H_{2n}$	•	(4)None at	pove
37. According to Bohr, equantum no is n ther (1) nh (2) h/π	n the angular mom		
	ion of matter are eq d backward rates ar rate will be higher		
39. The hydrolysis const (1) 5.55 x 10 ⁻⁵	cant (k _h) of CH ₃ CO (2) 5.55x10 ⁻¹⁰	ONa at 25 ⁰ C (3) 5.55x10	will be: $(\mathbf{K_a} = 1.8 \times 10^{-5})$ 0 ⁻¹² (4) 5.55×10 ⁻¹¹
40. If the ladius of I Boh be: (1) 12a ₀ (2) a ₀	ar orbit of H is $\mathbf{a_0}$ th (30 $9\mathbf{a_0}$		s of III Bohar orbit will
41. The knowledge of en (1) Principal quan (2) Azimuthal qua (3) Magnetic quan (4) Spin quantum	atum no. antum no. antum no.	of an electron	is found from :
42. The conjugate acid of (1) HCI		$HCIO_2$ (4)	HCIO ₄
43. OH and H ₂ O both a (1) Acids (2) Bas	_		Base and acid

(3) shares electrons(4) gains electrons

	quantum no.		ed by:	
(1) s	(2) n	(3) 1	(4) m	
45. The value	es of uand n fo	or 2p orbital	are:	
$(1) \iota = 2 ,$	n = 2 (2	2) $\iota = 2$, $n = 1$	(3) $t=0$, $n=1$ (4)	$\iota = 1, n=2$
46. Which of	the following	are present	in the aqueous so	lution of Na ₂ CO ₃ :
	CO ₃ , Na ⁺ , OH			
	CO_3 , OH^- , CO) ₃ ²⁻		
, ,	O_3^{-2} ion			
(4) Na	⁺ and OH ⁻			
47. The 10. of	f an unpaired	electrons in	the configuation	$1s^2$, $2s^2p^3$ are:
(1) 5	(2) 3	(3) 2	(4) 1	
_	_			in the water the pH valu
	d become 13.		ill be: (3) CH ₃ COONa	(4)NaCI
(1) C113C0	JON114 (2	L) 11114C1	(3) CH3COONa	(4)NaCI
49. The magn	_			
` '	entation of orl			
, ,	ape of orbitals			
` '	e of orbitals			
(4) Al	I			
50. The value	of electrones	ga-fivity in a	column from rigl	nt to left becomes:
	tain change			s (4) increases
\rightarrow				
			when pressure in	creases:
` ′ 1	uilibrium cons		double	
` '	ore Cl ₂ produc			
, ,	e dissociation e dissociation			
(4) 111	e uissociation	of FC15 decre	cases	
52. Shape of	s orbital is :			
(1) double	dumb bell (2	2) spherical	(3) dumb bell (4)	none of these
53. The corre	ect order of io	nization pot	ential is :	
(1) N>C>1	$B \qquad (2) N > B > B$	$>$ C (3) $\stackrel{\frown}{C}>$ N	N>B (4) $N3$	3
54. CCI ₄ is m	oro covolont	than LiCL be		
-	ole moment o			
` ' -	oole moment o			
` ' -	-CI bond is po		,	
, ,	CI bond is nor			
		•		
	_		paired electrons	in N ₂ molecule:
(1) 2	(2) 6	(3) 5	(4) 4	

56. Strangest	electronegativ	e element is :	
(1) I	(2) F	(3) CI	(4) Br
(1) ele (2) ion (3) ele	mic no. of alka ctron affinity in ic radius increa ctro negativity ization potentia	ses increases	ases:
(1) lon (2) lon (3) sho	bond of C ₆ H ₅ g and weak g and strong ort and weak ort and strong	CI incomparis	sion with CH ₃ CI is:
59. C ₆ H ₆ +CH	3COCI AICI3		
	$C_6H_5C_6$	OCH ₃ +HCI	
(1) Wurtz(2) Friedel(3) Schoft	of the above r reaction craft reaction en Bauman reaction		
60. Which of	the following o	one has electro	onic configuration of transition element
(2) $1s^2$ (3) $1s^2$	2s ² 2p ⁶ 3s ² 3p ⁶ 2s ² 2p ⁶ 3s ² 3p ⁴ 2s ² 2p ⁶ 3s ² 3p ⁶ 2s ² 2p ⁶ 3s ² 3p ⁶		
(1) wh (2) wit (3) wit	of the following en HNO ₃ is add h conc. and hot h dilute and ho h dilute and col	led : H ₂ SO ₄ t H ₂ SO ₄	enzene reacts with H ₂ SO ₄ :
(1) 3 σ and		8σ and 7π	oethylene are :
63. Which of (1) O ₂ ²⁻		s diamagnetic (3) O ₂ ⁺	
64. To recogn	ize the positio	n and velocity	of an electron around the nucleas at a

time is:

 (1) could not say any thing (2) sometime possible and some tin (3) impossible (4) possible 	ne not possible
65. Which of the following is found from (1) C ₂ H ₅ COOH (2) HCOOH (3)	·
 66. According to Bohr when an electron (1) Bohr theory does not explains (2) There is no change in energy (3) Energy of electron reduces (4) Energy of an electron increases 	reaches at the lowest level then :
67. The pH value of a solution is 5. The h (1) 10^{-8} (2) 10^{-2} (3) 10^{-5}	hydrogen ion concentration will be : $(4) 10^{-7}$
68. The molarity of a solution in which 5	.3 gm. Na ₂ CO ₃ is dissohed in 500 ml.
will be: (1) 1.0 M (2) 0.1 M (3) 0.25 M	M (4) 0.2 M
69. Cupellation method is used the extra (1) Zn (2) Ag (3) Fe	ction of the following : (4) Cu
70. The compound which is found from (1) CH ₃ COCH ₂ CH ₂ (2) HCH	the distillation of calcium acetate is : O (3) CH ₃ CHO (4) (CH ₃) ₂ CO
71. By which of the following process hy (1) addition (2) combustion (3)	
72. If a compound containing more than clalure, the preferace is given to: (1) principal functional group (2) triple bond (3) double bond (4) other functional group	one functional groups. In the nomen-
73. Which of the following is tertiary car	bonium ion:
\oplus \oplus (1) (CH ₃) ₃ C (2) (CH ₃) ₂ CH	$ \bigoplus \qquad \bigoplus \\ (3) CH_3CH_2 (4) CH_3 $
74. Which of the following is true statem (1) Acetylene gives white precipitate Cu ₂ Cl ₂	ent: te with AgNo ₃ and red precipitate with with AgNO ₃ and white precipitate with

(4) Acetylene gives red precipitate with both

75. Which of th	ne following is	electrophilic :		
	$(2) NH_3$	-		
76. In which of	the following	solution meth	yl orange ş	gives red colour :
(1) HCI	(2) NaOH	(3) CH ₃ COO	ONa ((4) CH ₃ COONH
77 The nH vol	ua of water is '	Γ Whon a cal	t V is disso	had tha nH value

77. The pH value of water is T. When a salt X is dissobed the pH value becomes 13. The salt X will be:

- (1) salt of weak acid and weak base
- (2) salt of weak acid and strong base
- (3) salt of strong acid and weak base
- (4) salt of strong acid and strong base

78. For which of the following titration phenolphthalein is suitable indicator:

- (1) NH₄OHand NH₄CI
- (2) CH₃COOH and NaOH
- (3) HCI and NH₄OH
- (4) H₂CO₃&N₂CO₃

79. The true statement for CH₃COONH₄ is :

(1)
$$K_h = \frac{Kw}{K_a}$$
 (2) $K_h = \frac{Kw}{K_aK_b}$ (3) $K_h = \frac{Kw}{K_b}$ (4) All above

$$(3) K_h = \underbrace{KW}_{K_1}$$

80. The IUPAC name of CH₃
$$CH_3$$
 CH_3 CH_3

$CH=CH_2$ is:

- (1) 3,3 dimethyl-3-butene
- (2) 4,4-dimethyl-2-butene
- (3) 3,3-dimethyl-l-butene
- (4) 3,3-dimethyl-2-butene

81. Which of the following set of quantum nos. are not possible :

- (1) 3,2,3,1/2 (2) 5,0,0,1/2 (3) 3,2,-3, $\frac{1}{2}$ (4) 5,1,0,-1/2

82. For a solution mole nos. of solute and whole solution are 20 and 80 receptively then the mole fraction of solute will be:

- (1) 0.35
- (2) 4.0
- (3) 0.4
- (4) 0.25

83. The degree of lonisation of an electrolyte depends upon :

- (1) size of solvent molecules
- (2) nature of solvent molecules
- (3) Ionisation potential of solvent molecules
- (4) shapee of solvent molecules

 84. The chemical properties of an element depends upon: (1) atomic no. and volume (2) atomic weight and volume (3) atomic no. and electronic configuration (4) atomic no. of atomic weight
85. Paramagnetism is found in elements when: (1) all electrons are paired (2) octet is complete (3) all electrons are shared (4) unpaired electrons are present
86. $C_6H_5NH_2 + CHCI_3 + KOH \rightarrow (A) + KCI + H_2O$ here A is : (1) $C_6H_4(CI)NH_2$ (2) C_6H_5CN (3) $C_6H_4(OH)NH_2$ (4) C_6H_5NC
87. Ethane, ethane and ehtyne. In which of the above three. C-H bond energy
is highest:
(1) in C_2H_4 (2) in C_2H_6 (3) in C_2H_2 (4) same
88. The correct order of strength of halogen acids is: (1) HI>HCI>HBr>HF (2) HCI>HF>HBr>HI (3) HF (4) HF>HCI>HBr>HI
89. Which of the following pair has same electronic configuration : (1) K^+ , Rb^+ (2) Na^+ , K^+ (3) K^+ , Ca^{2+} (4) Li^+ , NO^+
 90. Alkali metal gets inert gas configuration by: (1) making coordination bond (2) sharing an electron (3) gain of an-electron (4) loss of an electron
 91. The polarity of covalent bond between two atoms depends upon: nos. of an unpaired electrons electronic configuration of an atom electronegativity of an atom lonisation potential of an atom
92. The shape of an ammonia molecule is: (1) pyranide (2) tetrahedral (3) triangular (4) linear
93. The important copper ore is: (1) Chalocopyrites (2) Alumina (3) Bauxite (4) Sedarite
94. Cryolite is added in the extraction of aluminium because of : (1) Oxidation of bauxite

- (2) To remove bauxite from anode
- (3) Reduction of bauxite
- (4) To fuse bauxite

95. By which of the following regent aldehyde and ketone is distinguished:

- (1) Fehling solution (2) Bayer solution
- (3) Na₂CO₃
- $(4) O_3$

96. Which of the following does not give precipitate with $(NaOH + I_2)$:

- (1) Ethanol
- (2) Benzaldehyde
- (3) Acetone
- (40 Acetaldehyde

97. Sodium acetate + soda lime $\rightarrow A$ here A is :

- (1) Butane
- (2) Propane
- (3) Ethane
- (4) Methane

98. Diethyl ether is not a isomer of :

(1) Butanone (2) Butanol (3) Methyl isopropyl ether (4) Methyl propyl ether

99. By which of the following shiff reagent gives pink colour:

- (1) Diethyl ether
- (2) Acetaldehyde
- (3) Methanol (4) Acetone

100.In which of the following oxidation state of N is 1:

- (1) NH₃
- (2) N_2O
- (3) NH₂OH
- (4) NO

ANSWER SHEET

1.(1)	2.(3)	3.(2)	4.(2)	5.(2)	6.(1)	7.(3)	8.(2)	9.(1)	10.(4)	11.(3)
12.(2)	13.(4)	14.(2)	15.(3)	16.(2)	17.(3)	18.(1)	19.(3)	20.(3)	21.(3)	22.(1)
23.(3)	24.(2)	25.(2)	26.(3)	27.(2)	28.(2)	29.(4)	30.(2)	31.(2)	32.(1)	33.(4)
34.(2)	35.(3)	36.(2)	37.(4)	38.(2)	39.(2)	40.(3)	41.(1)	42.(1)	43.(2)	44.(3)
45.(4)	46.(2)	47.(2)	48.(3)	49.(1)	50.(3)	51.(4)	52.(2)	53.(1)	54.(3)	55.(2)
56.(2)	57.(2)	58.(4)	59.(2)	60.(3)	61.(1)	62.(3)	63.(1)	64.(3)	65.(1)	66.(3)
67.(3)	68.(2)	69.(2)	70.(4)	71.(3)	72.(1)	73.(1)	74.(1)	75.(4)	76.(1)	77.(2)
78.(2)	79.(2)	80.(3)	81.(3)	82.(4)	83.(2)	84.(3)	85.(4)	86.(4)	87.(3)	88.(3)
89.(3)	90.(4)	91.(3)	92.(1)	93.(1)	94.(4)	95.(1)	96.(2)	97.(4)	98.(1)	99.(2)
100(2)										