143/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	Most cher	nically active concrete aggregate are fro	om:	
	(A)	Igneous rock	(B)	Sedimentary rock
	(C)	Metamorphic rock	(D)	Sand stones
2.		sugar added to concrete:		
	(A)	Increases the strength of concrete	(B)	Retards the setting of concrete
	(C)	Accelerates the setting of concrete	(D)	Gives colour to concrete
3.	Air perme	eability test is done to measure:		
	(A)	Setting time of cement	(B)	Soundness of cement
	(C)	Chemical composition of cement	(D)	Fineness of cement
4.	ASCU is:			
	(A)	A damp proofing material for concrete	(B)	A preservative for timber
	(C)	A type of brick bond	(D)	A type of building finish
5.	For concre	ete exposed to dry conditions, the minin	num	curing period is :
	(A)	5 days	(B)	7 days
	(C)	10 days	(D)	14 days
6.	A window	that projects outside the external walls	s of a	room is:
	(A)	Gable window	(B)	Sash window
	(C)	Dormer window	(D)	Bay window
7.	A floor sla	ab supported directly on column is calle	d :	
	(A)	Ribbed slab	(B)	Flat slab
	(C)	Flat plate	(D)	Grid floor
8.	Service pl	an:		
	(A)	is drawn to a scale not less than that	of site	e plan
	(B)	include layout of existing water suppl		
	(C)	shows predominant wind direction		
	(D)	all the above		

9.	The notat	ional colour for existing hazardous	s building i	in a site plan is:
	(A)	Black	(B)	Red
	(C)	Purple	(D)	Dark blue
10.	For a rect	angular foundation of width b, eco	entricity o	f load should not exceed:
	(A)	b/2	(B)	b/3
	(C)	b/5	(D)	b/6
11.	The proje	cting ornamental course at the jur	action of a	wall and ceiling :
	(A)	Coping	(B)	Corbel
	(C)	Cornice	(D)	Parapet
12.	Group B l	ouildings are :		a library Constitution with this property of the
	(A)	residential	(B)	institutional
	(C)	assembly	(D)	educational
13.	Roof truss	ses are generally used when the sp	an exceed	s:
	(A)	3m	(B)	5m
	(C)	10m	(D)	15m
14.	In struck	pointing, the face of the pointing i	s:	
	(A)	flat	(B)	sloping outwards
	(C)	vertical but pressed inside	(D)	grooved
15.	Minimum	period before striking soffit form	work to sla	bs:
	(A)	21 days	(B)	7 days
	(C)	3 days	(D)	1 day
16.	The line j	oining the optical centre of object	glass to the	e centre of eye- piece of a telescope is:
	(A)	Line of collimation	(B)	Line of sight
	(C)	Axis of bubble tube	(D)	Axis of telescope
17.	The line r	normal to the plumb line at all poin	nts:	
	(A)	Vertical line	(B)	Horizontal line
	(C)	Datum line	(D)	Level line
143	/2015		4	

18.	18. The staff readings taken at stations A, B, C, D from a single setup of the level are 1.105, 2.155, 1.785. The station B is:			a single setup of the level are 0.535,
	(A)	Below A and D	(B)	Above C and D
	(C)	Between C and D	(D)	None of the above
19.	The BS is	6.655 taken on BM of RL 400.000. If F	S is 1	.45, RL of the last station is:
	(A)	394.795	(B)	401.450
	(C)	405.205	(D)	406.655
20.	The horiz	ontal angle between the true meridian	and n	nagnetic meridian is known as:
	(A)	Declination	(B)	Dip
	(C)	Bearing	(D)	Local attraction
21.	The fore a	and back bearing of a line differ exactly	by:	
	(A)	360°	(B)	180°
	(C)	90°	(D)	45°
22.		s of elevation from A to the top and boand 30° respectively. The horizontal dis		of a rod of length 2 m held vertically at e AB is:
	(A)	4.732 m	(B)	1.268 m
	(C)	3.464 m	(D)	0.789 m
23.	The sun is	s at the Autumnal Equinox on :		
	(A)	March 21	(B)	June 21
	(C)	September 21	(D)	December 21
24.	Subsidiar	y station established as near the true tr	riangu	lation station as possible is known as:
	(A)	Satellite station	(B)	Principal station
	(C)	Central station	(D).	Pivot station
25.		of weight W is resting against a snum force to be applied at the floor en		
	(A)	$\operatorname{Wtan} \theta$	(B)	$0.5 \mathrm{W} \tan \theta$
	(C)	$W \cot \theta$	(D)	$0.5\mathrm{W}\cot heta$
26.		e of gravity of a right circular hollow stance of — from the base.	cone	of diameter d and height h lies at a
	(A)	h/2	(B)	h/3
	(C)	h/4	(D)	h/6

27.	27. A block of weight 20kN just begins to move along a horizontal surface on application horizontal force. The coefficient of friction between block and surface is:			orizontal surface on application of 5 ck and surface is :	kN
	(A)	0.10	(B)	0.20	
	(C)	0.25	(D)	0.50	
28.	Which of	the following is an incorrect as	ssumption in th	ne analysis of truss?	
	(A)	All joints are pinned			
	(B)	Loads applied at joints only			
	(C)	All members are straight			
	(D)	Weights of members are acti	ng at their cen	tres	
29.	During st	rain hardening :			
	(A)	Material undergoes changes	in atomic and	crystalline structures	
	(B)	Increased resistance to furth	ner deformation	ı	
	(C)	Stress strain diagram has po	ositive slope		
	(D)	All the above			
30.	Ability of	a material to absorb energy w	rithin the elasti	ic range :	
	(A)	Toughness	(B)	Elasticity	
	(C)	Stiffness	(D)	Resilience	
31.	A cantile a point lo end is:	ver beam fixed at left end carred W at the free end. If L is	ries a udl w / ur the length of th	nit length over the left half portion a he beam, the bending moment at fi	and xed
	(A)	$WL/2 + wL^2/4$	(B)	$wL/2 + WL^2/4$	
	(C)	$WL + WL^2/8$	(D)	$WL + wL^2/8$	
32.	A beam A and it can	ABC, is simply supported at A	and B and BC leflection at C i	C is overhanging. $AB = L$ and $BC = L$ is:	L/2
	(A)	PL ² /24EI	(B)	PL³/8EI	
	(C)	PL³/48EI	(D)	$PL^2/16EI$	
33.	The Poiss	son's ratio of a material is 0.3	and Young's mo	odulus is 200 GPa. Its Rigidity Modu	ılus
	(A)	77 GPa	(B)	51 GPa	
	(C)	125 GPa	(D)	333 GPa	
	(0)				

34.		moment M and torque stress is equal to the ma					maximum
	(A)	T		(B)	2T		
	(C)	T/2	•	(D)	T/4		
35.	Surface to	ension is caused by a fo	rce of —	at	the free surfa	ice.	
	(A)	Adhesion		(B)	Cohesion		
	(C)	Both (A) and (B)		(D)	Either (A) or	(B)	
36.		height of a mountain if y respectively. Specific				top are 74 cm	and 60 cm
	(A)	1000 m		(B)	1750 m		
	(C)	2600 m		(D)	1560 m		
37.	A stable s	submerged body has:					
	(A)	Centre of gravity belo	w centre of bu	oyancy			
	(B)	Centre of gravity belo	w metacentre				
•	(C)	Centre of gravity above	ve centre of bu	oyancy			
	(D)	Centre of gravity above	ve metacentre				
38.	Poise is th	ne unit of:					
	(A)	Density		(B)	Velocity grad	ient	
	(C)	Kinematic viscosity		(D)	Dynamic visc	cosity	
39.	The veloci	ity distribution at any s	ection of a pipe	e for ste	ady laminar f	low is:	
	(A)	Linear		(B)	Exponential		
	(C)	Parabolic		(D)	Constant		
40.	In flow the transmiss	hrough pipe, the efficient	ency of transn	nission	under conditi	ons of maxim	um power
	(A)	50%		(B)	66.67%		
	(C)	70%		(D)	95.9%		
41.	A rectang the ratio	ular channel will be mo	ost economical	when the	he flow depth	and bottom w	idth are in
	(A)	2:1		(B)	1:1		
	(C)	1:2		(D)	1:4		

42.	Water flo	w in large sized pipes for lar	ge flow rates can	be measured using:
	(A)	Orifices	(B)	Notches
	(C)	Venturi meter	(D)	Elbow meter
43.	An inwar	d flow reaction turbine :		
	(A)	Impulse turbine	(B)	Francis turbine
	(C)	Pelton turbine	(D)	All the above
44.	The amou	ant of moisture present in th	e air expressed a	s mass per unit volume is:
	(A)	Absolute humidity	(B)	Saturation rate
	(C)	Vapour pressure	(D)	All the above
45.	The salt of	concentration in irrigation w	ater is generally	measured by:
	(A)	SAR value	(B)	Electrical conductivity value
	(C)	pH value	(D)	BOD value
46.	Optimum	depth of kor – watering for	rice is:	
	(A)	13.5 cm	(B)	16.5 cm
	(C)	19 cm	(D)	20 cm
47.	The crop		s. It requires 10	cm depth of water at every 10 days
	(A)	120 cm	(B)	60 cm
	(C)	12 cm	(D)	6 cm
48.	The water	r which cannot be extracted	by the plants from	m the soil is called:
	(A)	Capillary water	(B)	Hygroscopic water
	(C)	Available moisture	(D)	Field capacity
49.	The canal	l which is not supposed to do	any irrigation is	called:
	(A)	Major distributory	(B)	Minor distributory
	(C)	Branch canal	(D)	Main canal
50.	The geolo	gical formation which contain	ins and readily y	elds water to tube wells:
	(A)	Water table	(B)	Aquifer
	(C)	Aquiclude	(D)	Aquifuge
51.	Type of cr	coss – drainage work where	canal is passed b	elow the drainage is :
	(A)	Super passage	(B)	Aqueduct
	(C)	Inlet	(D)	Level crossing

A

52.		oir which retains excess supplies of during low flows:	during pe	riods of peak	flows and release then	n
	(A)	Retarding reservoir	(B)	Flood control	reservoir	
	(C)	Distribution reservoir	(D)	Conservation	reservoir	
53.	A plot of	cumulative rain versus time is calle	d:			
	(A)	Mass curve	(B)	Hydrograph		
	(C)	Hyetograph	(D)	DAD curve		
54.	Example	of subsurface source of water:				
	(A)	River	(B)	Ponds		
	(C)	Spring	(D)	Streams		
55.		dard unit of turbidity of water is in one litre of distilled water.	that whi	ch is produce	d by 1 mg of	
	(A)	Finely divided silica	(B)	Platinum cob	alt	
	(C)	Potassium permanganate	(D)	Formazin		
56.	A compou	and that imparts temporary hardnes	ss to wate	r:		
	(A)	Calcium sulphate	(B)	Magnesium c	hloride	
	(C)	Calcium nitrate	(D)	Magnesium c	arbonate	
57.	Which of	the following is incorrect regarding	a slow sar	nd filter:		
	(A)	Incoming water should not be trea	ted by coa	agulants		
	(B)	Depth of water should be double t	he depth o	of filter sand		
	(C)	Loss of head is limited to a maxim	um of 1.2	m		
	(D)	Cleaning should not be done by ba	ck washii	ng		
58.	A method	of disinfection of drinking water:				
	(A)	Treatment with excess lime	(B)	Treatment wi	th ozone	
	(C)	Electra-Katadyn process	(D)	All the above		
59.	BOD of ef	fluent from secondary biological tre	atment of	sewage is:		
	(A)	0 to 5% of the original	(B)	5 to 10% of th	e original	
	(C)	25 to 40% of the original	(D)	50 to 60% of t	he original	

60.	During sl	udge digestion:		
	(A)	Acidity condition should prevail	(B)	Alkaline condition should prevail
	(C)	Acidity or alkaline condition	(D)	Neutral condition should prevail
61.	*	osal method in which solid waste is gaseous, liquid and solid fractions:	s heate	d in an oxygen free atmosphere and
	(A)	Pyrolysis	(B)	Pulverisation
	(C)	Incineration	(D)	Composting
62.	The best	system of plumbing of drainage work	in build	ling is:
	(A)	One pipe system		The Approximate Manager (Approximately 1991)
	(B)	Two pipe system		
	(C)	Single stack system		
	(D)	Partially ventilated single stack sys	tem	en and the second of the secon
63.	Water con	ntent of soil is 0.15, Degree of saturati	ion 70%	, void ratio is 0.61, then specific gravity
	(A)	2.85	(B)	2.13
	(C)	2.50	(D)	2.17
64.	The nume	erical difference between liquid limit	and plas	stic limit is:
	(A)	Liquidity index	(B)	Plasticity index
	(C)	Consistency index	(D)	Flow index
65.	The intereguation		oelow a	concentrated load Q, by Boussinesq
	(A)	$\sigma_z = 0.5775 \frac{Q}{z^2}$	(B)	$\sigma_z = 0.4775 Qz^2$
	(C)	$\sigma_z = 0.4775 \frac{Q}{z^2}$	(D)	$\sigma_z = 0.5775 Qz^2$
66.	The volum	netric strain per unit increase in effec	etive str	ess of soil is defined as:
	(A)	Compression index	(B)	Volume compressibility
	(C)	Coefficient of compressibility	(D)	Consolidation
67.	Failure of	f a finite slope along a surface that int	tersects	the slope above the toe:
	(A)	Compound failure	(B)	Base failure
	(C)	Slope failure	(D)	Toe failure
143	2015	10		A

68.	The heig	ht to diameter ratio of cylindrical	specin	nen for uni	axial compression test of
		0.50	(B)	0.30	
	(C)	0.25	(D)	2.00	
69.	Which of	the following is a measure of dynamic	modul	us of elastici	ty of concrete?
	(A)	Tangent modulus	(B)	Secant mod	
	(C)	Initial tangent modulus	(D)	All the above	
70.	The parti	al safety factor for strength of concret	e for se	rvice ability	limit state is :
	(A)	1.00	(B)	1.10	
	(C)	1.15	(D)	1.25	
71.	When rein	nforcement bars placed short of their	require	d length need	d to be extended, we use :
	(A)	anchorages	(B)	standard be	ends and hooks
	(C)	development length	(D)	splices	
72.		nate moment of resistance by LSM rete, reinforced with 4-25mm dia Fe25			= 300 mm, d = 550 mm,
	(A)	146 kNm	(B)	194 kNm	
	(C)	200 kNm	(D)	210 kNm	
73.	Relation b	petween Young's modulus and cube st	rength	of concrete is	3:
	(A)	$E_c = 500\sqrt{f_{ck}}$	(B)	$E_c = 5700$	f_{ck}
	(C)	$E_c = 5000\sqrt{f_{ck}}$	(D)	$E_c = 700\sqrt{f_c}$	ck
74.		imum area of tension reinforcement 400 mm if Fe415 steel is used at 25 m			rectangular beam section
	(A)	154 mm ²	(B)	180 mm ²	
	(C)	164 mm ²	(D)	193 mm ²	
75.	Effective	span of a simply supported beam is:			
	(A)	Face to face distance of supports	(B)	Clear span	+ effective depth
	(C)	Clear span – effective depth	(D)	Clear span	+ effective depth /2
76.	Minimum	grade of concrete for pre tensioned p	re-stres	sed concrete	
	(A)	M20	(B)	M30	
	(C)	M40	(D)	M45	

77.		Minimum reinforcement required in either direction in slabs reinforced with high strength deformed bars is :					
	(A)	0.11	(B)	0.12			
	(C)	0.15	(D)	0.17			
78.	Structura	l steel of grade Fe410 A has ultimate	tensile	strength of:			
	(A)	410 MPa	(B)	328 MPa			
	(C)	300 MPa	(D)	520 MPa			
79.	The diam	eter of bolt hole for a bolt of nominal	size 12	mm is:			
	(A)	12.0 mm	(B)	12.5 mm			
	(C)	13.0 mm	(D)	14.0 mm			
80.	Common	hot rolled steel axial compression me	mbers f	ail by:			
	(A)	Gross section yielding	(B)	Critical section rupture			
	(C)	Block shear	(D)	Flexural buckling			
81.		ndian Standards, the maximum bea	ring pro	essure at the column base should not			
	(A)	$0.40~\mathrm{f_{ck}}$	(B)	$0.45~\mathrm{f_{ck}}$			
	(C)	0.50 f _{ck}	(D)	0.60 f _{ck}			
82.		appression element of a cold formed s ion of stress is called:	teel sect	tion, stiffened at both edges parallel to			
	(A)	Stiffened compression element	(B)	Unstiffened compression element			
	(C)	Multiple stiffened element	(D)	Flat element			
83.	Failure by	block shear at an end connection of	a plate	involves:			
	(A)	Shear along two planes, tension alo	ng two p	planes			
	(B)	Shear along one planes, tension alo	ng two p	planes			
	(C)	Shear along two planes, tension alo	ng one p	plane			
	(D)	Shear along one plane, tension alon	g one pl	ane			
84.	Which of	the following decides the width of tax	iway?				
	(A)	Tail width	(B)	Fuselage length			
	(C)	Wheel base	(D)	Wing span of aircraft			

85.	Elevator					
	(A)	Controls pitching of aircraft	(B)	Controls yawing of aircraft		
	(C)	Is fixed on the wing	(D)	Controls rolling of aircraft		
86.		the super elevation required on a eed of 50 km/h and coefficient of la		al circular curve of radius 100m for a on 0.15?		
	(A)	0.017	(B)	0.027		
	(C)	0.047	(D)	0.157		
87.	Ruling gr	adient for mountainous terrain is:				
	(A)	4%	(B)	5%		
	(C)	6%	(D)	7%		
88.	The psych		rizontal c	urve of radius 235 m for a design speed		
	(A)	0.446 m	(B)	0.456 m		
	(C)	0.646 m	(D)	0.656 m		
89.	If the cros	ss slope of a terrain is 20 %, accord	ing to IRC	classification, it is a:		
	(A)	Plain terrain	(B)	Rolling terrain		
	(C)	Mountainous terrain	(D)	Steep terrain		
90.	The numb	per of vehicles occupying a unit length	gth of a la	ne of roadway at a given instant is:		
	(A)	Traffic volume	(B)	Traffic capacity		
	(C)	Traffic density	(D)	Basic capacity		
91.	Which of	the following is a warning sign?				
	(A)	One – way	(B)	Speed limit		
	(C)	Cycle crossing	(D)	Parking		
92.	The gauge of a railway track is defined as:					
	(A)	The clear distance between inner	faces of tv	wo rails		
	(B)	The clear distance between outer	faces of tv	vo rails		
	(C)	The centre to centre distance bety	ween two i	rails		
	(D)	The distance between inner faces	of a pair	of wheels		

93.	Equilibriu 70 kmph,		Broad Gau	ige track, if the permitted speed
	(A)	18.85 cm	(B)	16.20 cm
	(C)	15.85 cm	(D)	11.25 cm
94.	The gradi	ent which determines the maxin	num load tha	t the engine can haul on a section:
	(A)	Ruling gradient	(B)	Momentum gradient
	(C)	Pusher gradient	(D)	Super elevation
95.	The differ	rence between the latest allowab	le time and t	he earliest expected time is:
	(A)	Maximum float	(B)	Total float
	(C)	Slack time	(D)	Free float
96.	Military o	organisation is:		
	(A)	Line organisation	(B)	Line and staff organisation
	(C)	Functional organisation	(D)	None of these
97.	'The Gard	len City' principle for town plans	ning was intr	oduced by:
	(A)	Sir Ebenezer Howard	(B)	Sir Patrick Geddes
	(C)	Clarence Stein	(D)	Henry Wright
98.	Which of	the following is a natural growth	of a town?	
	(A)	Ribbon development	(B)	Satellite growth
	(C)	Scattered growth	(D)	All the above
99.	Honey con	nb brick wall is measured in :		
	(A)	Metres	(B)	Square metres
	(C)	Cubic metres	(D)	Number
100.	The value	of dismantled materials:		
	(A)	Scrap value	(B)	Rateable value
	(C)	Salvage value	(D)	Market value