Useful Constants:

Rydberg constant = 109737 cm^{-1} ; Faraday constant = 96500 C; Planck constant = $6.625 \times 10^{-34} \text{ J}$ s; Speed of light = $2.998 \times 10^8 \text{ m s}^{-1}$; Boltzmann constant = $1.380 \times 10^{-23} \text{ J}$ K⁻¹; Gas constant = 8.314 J K⁻¹ mol⁻¹ = 0.082 L atm K⁻¹ mol⁻¹ = $1.986 \text{ cal K}^{-1} \text{ mol}^{-1}$; Mass of electron = $9.109 \times 10^{-31} \text{ kg}$; Mass of proton = $1.672 \times 10^{-27} \text{ kg}$; Charge of electron = $1.6 \times 10^{-19} \text{ C}$; $1 \text{ D} = 3.336 \times 10^{-30} \text{ C}$ m; $1 \text{ bar} = 10^5 \text{ N} \text{ m}^{-2}$; RT/F (at 298.15 K) = 0.0257 V.

PART – A

 Identify the order of acid strength of CH₃CO₂H, CF₃CO₂H, NO₂CH₂CO₂H, and CCl₃CO₂H.

 $\begin{array}{l} \mbox{[A] } CH_{3}CO_{2}H < NO_{2}CH_{2}CO_{2}H < CCl_{3}CO_{2}H < CF_{3}CO_{2}H \\ \mbox{[B] } CH_{3}CO_{2}H < CCl_{3}CO_{2}H < NO_{2}CH_{2}CO_{2}H < CF_{3}CO_{2}H \\ \mbox{[C] } CH_{3}CO_{2}H < NO_{2}CH_{2}CO_{2}H < CF_{3}CO_{2}H < CCl_{3}CO_{2}H \\ \mbox{[D] } CH_{3}CO_{2}H > NO_{2}CH_{2}CO_{2}H > CCl_{3}CO_{2}H > CF_{3}CO_{2}H \\ \end{array}$

2. Among the following, the molecule having the longest bond length is:

[A]	٠	NO	[B]	NO^+
[C]		NO ²⁺	[D]	NO-

3. The number of real roots to the pair of equations $x^2 + y^2 = 1$ and $9x^2 + 4y^2 = 36$ is:

[A]	0	[B]	1
[C]	2	[D]	3

4. One of the molecules present in turmeric is:

[A] nicotine	[B] curcumir
[C] quinine	[D] piperine

5. The integral $\int_{\pi/4}^{3\pi/4} \frac{dx}{(1+\cos(x))} =$ [A] -2 [B] -1 [C] 4 [D] 2

Page 2 of 24

BOOKLET CODE C

6. 2-Pentyne on reduction with Na/liq.NH₃ provides:

7. In an election there are 10 candidates for 4 seats. The voter may cast vote for 1, 2, 3 or 4 seats. The total number of ways in which the voter can cast the vote is:

[A]	853	[B]	583
[C]	385	[D]	305

8. A circle is expanding in time; if the rate of increase of its radius is r', the rate of increase of its area is given by:

[A]	r' imes area	[B]	$(r')^2$
[C]	r' imes radius	[D]	r' imes circumference

9. A solid cylinder with diameter 3 cm and height 10 cm is flattened into a circular disc with diameter 30 cm. Thickness of the resulting disc is:

[A]	100 cm	[B]	1 cm
[C]	1 mm	[D]	1 nm

10. Let T_n be the number of all possible triangles formed by joining *n* non-collinear points. Then, $T_6 - T_5 =$

[A]	10	[B]	8
[C]	5	[D]	7

Page 3 of 24

11. The value of the following determinant is:

$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 5 & 6 & 9 \\ 7 & -1 & 0 & 2 \\ 3 & 5 & 6 & 9 \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix} -27 \qquad \begin{bmatrix} B \end{bmatrix} = 0$$

$$\begin{bmatrix} C \end{bmatrix} = 1 \qquad \begin{bmatrix} D \end{bmatrix} = 27$$

12. Identify the products obtained from the following reaction:

- [A] 3-phenylpropane-1,2-diol and methanol
- [B] 2-phenylethanal and ethanol
- [C] acetic acid and 2-phenylacetic acid
- [D] 2-phenylethanal and ethanal

13. Which one of the following is an unusual base pairing in nucleic acids?

[A] A-T	[B] G-T
[C] G-C	[D] A-U

14. The amino acid that directly participates in the biosynthesis of heme is:

[A] glycine	[B] methionine
[C] aspartate	[D] tryptophan

15. A triangle with vertices (4, 0), (-1, -1) and (3, 5) is:

[A]	isosceles and not right angled	[B]	right angled but not isosceles
[C]	isosceles and right angled	[D]	neither right angled nor isoscele

neither right angled nor isosceles

16. The graph of equation of $2x^2 + 2y^2 - 4x + y + 1 = 0$ is a:

- [A] circle with center $(1, -\frac{1}{4})$ and radius $\frac{3}{4}$
- [B] circle with center $\left(-\frac{1}{4}, 1\right)$ and radius $\frac{9}{16}$
- [C] parabola with vertex at $(1, -\frac{1}{4})$
- [D] parabola with vertex at $\left(-\frac{1}{4}, 1\right)$
- 17. If the point of intersection of the lines, 4ax + 2ay + c = 0 and 5bx + 2by + d = 0lies in the fourth quadrant and is equidistant from the two axes (a, b, c and d are nonzero numbers), then:

[A]
$$3bc - 2ad = 0$$
 [B] $2bc - 3ad = 0$

- [C] 2bc + 3ad = 0 [D] 3bc + 2ad = 0
- 18. Arrange the following intermediates in the decreasing order of their stability:

19. Excess acidity caused by acid rain to the soil can be neutralized by:

- [A] addition of more fertilizer[B] removal of acidified soil[C] addition of Cs₂CO₃[D] addition of lime
- 20. Half-life of ¹⁴C is 5730 years. The fraction of ¹⁴C that remains in a 50,000 years old

[A]	2.36 x 10 ⁻³	[B]	0.36 x 10 ⁻³
[C]	1.36 x 10 ⁻³	[D]	3.36 x 10 ⁻³

sample is:

21. The integral, $\int x \ln(x) dx =$

[A]
$$\frac{x^2}{2} + x\left(\ln(x) - \frac{1}{2}\right) + const.$$
 [B] $\frac{x\ln(x)}{2} + const.$

[C]
$$\frac{x^2}{2}\left(\ln(x) + \frac{1}{2}\right) + const.$$
 [D] $\frac{x^2}{2}\left(\ln(x) - \frac{1}{2}\right) + const.$

22. The molecule possessing non-zero dipole moment is:

[A]	CCl ₄	[B]	XeF ₄
[C]	SF ₄	[D]	PCl ₅

23. The hybridization of sulfur (as per VSEPR theory) in SF4 molecule is:

[A]	sp ²	[B]	sp^3d^2
[C]	sp ³ d	[D]	sp ³

24. Zinc uranyl acetate and Nessler's reagent are used in the confirmatory test of the following cations:

[A]	K ⁺ and NH ₄ ⁺ , respectively	[B]	Cs ⁺ and NH ₄ ⁺ , respectively
[C]	Na ⁺ and NH ₄ ⁺ , respectively	[D]	NH4 ⁺ and Na ⁺ , respectively

25. The pK_a value of hydrofluoric acid is 3.2. The approximate degree of dissociation of 0.35 M solution of hydrofluoric acid is:

[A] 1.2%	[B]	2.4%

[C] 4.2% [D] 12%

PART-B

26. The energy diagram that correctly corresponds to an enzyme catalyzed reaction is:

27. Intermediate involved in the Reimer-Tiemann reaction is:

[A] carbene

[B] carbanion

[C] free radical

[D] carbocation

28. Absolute stereochemistry of the following compound is:

AgOAc, 1₂ ? H₂O, AcOH [A] Me [B] HO Me OH "OH HO OH [C] [D] Me OH OH n۳ OH

29. The major product obtained in the following transformation is:

- **30.** Which one of the following reactions involves both oxidation and reduction processes?
 - [A] Robinson Annulation [C] Cannizaro reaction
 - [B] Claisen condensation [D] Perkin condensation
- 31. Contact angle of a liquid with glass wall of a capillary tube of length 10 cm is 90°. When the capillary tube is dipped vertically in the liquid, the liquid level in the capillary tube:
 - [A] increases [B] decreases
 - [C] remains same [D] overflows out

32. According to Hückel rule, which one of the following is not an aromatic compound?

33. The rate of effusion of O_2 is 1.0 mL s⁻¹ at 300 K and 1.0 atm pressure. Under the same conditions, the rate of effusion (in mL s⁻¹) of H₂ is close to:

[A]	1.0	[B]	4.0
[C]	8.0	[D]	16.0

34. The stereochemical change at the reaction centre (C*) in the following ring-opening reaction is (R=Methyl):

[A] inversion[B] retention[C] racemisation[D] double inversion

35. The decreasing order of boiling points of the following compounds is:

36. Ozonolysis of a given molecule (X) provides the product Y and acetone. The IUPAC name of Y is:

[A] (S)-5-hydroxy-3-methylpentanal

[B] (R)-5-hydroxy-3-methylpentanol

[C] (R)-5-hydroxy-3-methylpentanal

[D] (S)-3,6-dimethylhept-5-en-1-ol

37. The most stable conformation of (1R,3R)-1-isopropyl-3-methylcyclohexane is:

38. In the non-aqueous solvent BrF_3 , the nature of SbF_5 is:

[A]	basic	[B]	acidic
[C]	neutral	[D]	mildly basic

39. The product obtained in the following reaction is:

[A] N_2O [B] NO_2 [C] NO_3^- [D] N_2O_4 42. The major product formed in the following reaction is:

- 43. Two gases have the same value of van der Waals gas constant 'a' but different 'b' values. The more compressible of the two gases is:
 - [A] the gas with lower 'b' value.
 - [B] the gas with higher 'b' value.
 - [C] both are equally compressible.
 - [D] cannot be predicted.
- 44. Among the complexes (i) [Ni(CN)₄]²⁻, (ii) [Fe(CO)₅], (iii) [CuCl₅]³⁻ and (iv) [PtCl₆]²⁻ the ones that obey the 18-electron rule are:
 - [A] (i) and (ii) [B] (i) and (iii)
 - [C] (iii) and (iv) [D] (ii) and (iv)

45. Penicillin contains:

Ċ

[A] β -lactone unit

[C] γ -lactone unit

[B] β -lactam unit [D] γ -lactam unit

Page 11 of 24

46. The major product formed in the following reaction is:

47. The major product obtained in the following transformation is:

48. Reaction of dichromate anion with iodide in acid medium gives:

[A] Cr³⁺, iodine and water
[C] Cr³⁺, iodate and oxygen

[D] Cr²⁺, iodide and water

[B] Cr³⁺, iodate and water

49. Carbon-based free radical intermediates are stabilized by

[A] electron donating groups

[B] both electron donating and withdrawing groups

[C] electron withdrawing groups

[D] neutral substituents

50. The reaction that involves the formation of both C-C and C-O bonds is:

[A] Diels-Alder reaction

[B] Darzen's glycidic ester condensation

[C] Aldol reaction

[D] Beckmann rearrangement

51. A complex of formula [MA₂B₂]X₂ is found to have no geometrical isomers. Both A and B are monodentate ligands and X is a halogen. The structure of the complex is:

[A]	tetrahedral	[B]	square-planar
[C]	square-pyramidal	[D]	octahedral

52. The product formed in the following reaction is:

[B]

[D]

[C]

Ph-S NO₂

Page 13 of 24

53. The number of electrons involved in the following balanced redox reaction is:

2 MnO₄⁻(aq) +10 Br⁻(aq) + 16 H⁺ (aq) \rightarrow 2Mn²⁺(aq) + 5 Br₂(aq) + 8H₂O(I)

- [A] 2 [B] 4
- [C] 5 [D] 10

54. Names of O_2^- , O_2^{2-} , O_2^+ are respectively:

[A] superoxide, peroxide and dioxygenyl[B] peroxide, superoxide and dioxygenyl[C] superoxide, dioxygenyl and peroxide[D] dioxygenyl, peroxide, and superoxide

55. The hybridization of carbon, central nitrogen, and terminal nitrogen in the following resonance structure of diazomethane are respectively :

[A] <i>sp</i> ² , <i>sp</i> , <i>sp</i>	$[\mathbf{B}] sp^3, sp^2, sp$
$[C] sp^2, sp^2, sp$	[D] <i>sp</i> ³ , <i>sp</i> , <i>sp</i>

56. The number of OH and P=O groups present in triphosphoric acid are respectively:

[A]	3 and 5		[B]	5 and 3
[C]	2 and 5	•	[D]	3 and 3

57. Among BrO₄, SiF₄, TeF₄, ICI₄, the species isostructural to xenon tetrafluoride are (is):

[A]	BrO_{4}^{-} and ICI_{4}^{-}	[B]	TeF ₄ and ICI_4^-
[C]	Only ICI ₄	[D]	SiF ₄ and TeF ₄

Page 14 of 24

BOOKLET CODE C

58. Assuming an octahedral geometry the number of geometrical isomers that are possible in [PF₃Cl₃]⁻ and [PF₂Cl₄]⁻ are:

[A]	2, 2	[B]	2, 3
[C]	3, 2	[D]	4, 2

59. Among the following pair of diatomic molecules, choose the one where the bonding $\sigma(2p)$ orbital is lower in energy than the $\pi(2p)$ orbitals.

[A]	O_2 and F_2	[B]	O_2 and B_2
[C]	C ₂ and O ₂	[D]	F_2 and B_2

60. Among the following complexes, the pair which shows ionization isomerism is:

i.	$[Co(NH_3)_4(H_2O)Cl]Br_2$ and $[Co(NH_3)_4Br_2]Cl\cdot H_2O$
ii.	$[Co(NH_3)_4(H_2O)Cl]Cl_2$ and $[Co(NH_3)_4Cl_2]Cl\cdot H_2O$
iii.	[(ON)Ru(NO)4(OH)] ²⁻ and [(NO)Ru(NO)4(OH)] ²⁻
iv.	$[Co(en)_3][Cr(CN)_6]$ and $[Cr(en)_3][Co(CN)_6]$
[A] i	(B1 ii

r1	•	1-1	
[C]	iii	[D]	iv

• 61. The most abundant transition metal in earth crust is:

[A]	aluminium	[B]	copper
[C]	iron	[D]	calcium

62. If the vectors a = i - j + 2k, b = 2i + 4j + k and c = pi + j + qk are mutually orthogonal, then (p, q) is:

[A]	(2, -3)	[B]	(-2,3)
[C]	(-3, 2)	[D]	(3, - 2)

Page 15 of 24

63. The most appropriate product obtained in the following reaction is:

64. The correct IUPAC name of the following complex cation is:

- [A] tris[tetraammine-µ-dihydroxocobalt(III)]cobalt(III) ion
- [B] tris(μ -dihydroxotetraamminecobalt)cobalt(6+) ion
- [C] tris(tetraamminecobalt-hexahydroxo)cobalt(6+) ion
- [D] tetra(tetraamminehexahydroxo)cobalt(6+) ion

Page 16 of 24

65. Metal 'M₁' reacts with cyanide ion in the presence of air to form the complex anion M₁(CN)₂, which gives back 'M₁' upon treatment with 'M₂'. M₁ and M₂ are respectively:

[A]	silver and copper	[B]	copper and zinc
-----	-------------------	-----	-----------------

[C] gold and zinc [D] gold and silver

66. If
$$x^m y^n = (x + y)^{(m+n)}$$
, then $dy/dx = 1$

- [A] x/y [B] xy[C] (m+n)y/x [D] y/x
- 67. The fractional surface coverage (θ) in dissociative adsorption of a gas is (K= equilibrium constant for adsorption-desorption, P = pressure of gas):

[A]	$\theta = \frac{KP}{1 + KP}$	[B]	$\theta = \frac{KP^2}{1 + KP^2}$
[C]	$\theta = \frac{(KP)^{1/2}}{1 + (KP)^{1/2}}$	[D]	$\theta = \frac{(KP)^2}{1 + (KP)^2}$

- 68. A mixture contains equal number of polymer molecules with molecular weights 20,000 and 40,000. The number average molar mass of the mixture (in amu) is:
 - [A] 30,000[B] 25,000[C] 35,000[D] 42,000

69. A vessel contains a mixture of helium (He) and methane (CH₄). The ratio of the root mean square speed of the He atoms to that of the CH₄ molecules is:

[A]	1				[B]	2
[C]	4		·		[D]	16

70. The fragment which is *isolobal* to Fe(CO)₄ is:

[A]	CH_2	[B]	CH ₃
[C]	CH4	[D]	СН

71. The spin only magnetic moment (in Bohr Magneton) of high-spin Mn³⁺ ion is

[A]	1.73	[B]	3.88
[C]	2.83	[D]	4.90

72. The n^{th} derivative of $\ln(x)$, where n > 1, is:

[A]
$$\frac{(-1)^{n-1}(n-1)!}{x^n}$$
 [B] $\frac{(-1)^n(n-1)!}{x^n}$

[C]
$$\frac{(n-1)!}{x^n}$$
 [D] $\frac{(-1)^{n-1}n!}{x^n}$

73. The metal ions present in Chlorophyll and vitamin B_{12} are respectively:

[A]	Fe and Co	[B]	Fe and Mg
[C]	Co and Mg	[D]	Mg and Co

74. Match the following:

[1]	HgS	(a)	Pyrolusite
[2]	MnO ₂	(b)	Chalcopyrite
[3]	CuFeS ₂	(c)	Ilmenite
[4]	FeTiO ₃	(d)	Cassiterite
[5]	SnO ₂	(e)	Cinnabar

[A]	(1)-(e),	(2)-(a),	(3)-(b),	(4)-(c),	(5)-(d)
[B]	(1)-(e),	(2)-(c),	(3)-(a),	(4) - (d),	(5) - (b)
[C]	(1)-(b),	(2)-(a),	(3)-(e),	(4)-(c),	(5)-(d)
[D]	(1)-(c),	(2)-(d),	(3) -(b),	(4)-(a),	(5)-(e)

Page 18 of 24

75. The square of the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is:

 $\begin{bmatrix} A \end{bmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{bmatrix} B \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$\begin{bmatrix} C \end{bmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{bmatrix} D \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

76. The crystal field stabilization of tetrahedral $[CoBr_4]^{2-}$ is:

[A]	$4/9\Delta_t$	[B]	$6/9\Delta_t$
[C]	$4/5\Delta_t$	[D]	$6/5\Delta_t$

77. If the parabola, $y = 4x^2 + 3$ is rotated by -90° (anticlockwise 90°) about the origin, the resulting function is:

[A]	$y = 4x^2 - 3$	[B]	$x = -4y^2 - 3$
[C]	$y = -4x^2 - 3$	[D]	$x = 4y^2 - 3$

78. In the probability density distribution given below, a, b and c respectively represent:

[A] mode, mean and median [B] median, mode and mean

[C] mode, median and mean [D] mean, mode, median

79. If, $\cos \varphi - \sin \varphi = \sqrt{2} \sin \varphi$, then $\cos \varphi + \sin \varphi =$

 $[A] -\sqrt{2} \sin \varphi$ $[B] \sqrt{2} \csc \varphi$ $[C] \sqrt{2} \cos \varphi$ $[D] \sqrt{2} \tan \varphi$

80. When two dice are thrown simultaneously, the probability of obtaining 4 as the total is:

[A]	1/36	[B]	3/36
[C]	5/36	[D]	7/36

81. The plane that is perpendicular to the (110) plane in a simple cubic lattice is:

[A]	(010)	[B]	(001)
[C]	(101)	[D]	(011)

82. The limiting molar conductivity of NaOH, NaF and NH₄F are 24.8, 10.5 and 12.5 mS m² mol⁻¹, respectively. The limiting molar conductivity (in mS m² mol⁻¹) of NH₄OH is:

[A]	27.1	[B]	22.5
[C]	17.8	[D]	16.4

83. The exact differential among the following for a perfect gas (where P, T and R are pressure, temperature and gas constant, respectively) is:

- $\begin{bmatrix} A \end{bmatrix} \quad \frac{P}{RT}dT + RdP \qquad \qquad \begin{bmatrix} B \end{bmatrix} \quad RPdT + RTdP$
- $\begin{bmatrix} C \end{bmatrix} \qquad \frac{RP}{T}dT + \frac{RT}{P}dP \qquad \qquad \begin{bmatrix} D \end{bmatrix} \qquad RdT + \frac{RT}{P}dP$

84. A real gas behaves more like an ideal gas at:

- [A] low pressure and high temperature [B] high pressure and high temperature
- [C] low pressure and low temperature
- [D] high pressure and low temperature

85. In the cyclopropenium ion, the C-C and C-H bond lengths are respectively 1.37 Å and 1.00 Å. The non-bonded H---H distance (in Å) is:

86. The three quantum numbers (n, l, and m) of the unpaired electron of copper atom in its ground state are:

[A]	(4,0,0)	[B]	(4, 1, 0)
[C]	(3, 2, 0)	[D]	(3, 2, -2)

87. The ratio of the osmotic pressures of two solutions A and B (P_A/P_B) is 1.2. If the depression of freezing point of solution A is 0.3 K, the depression in the freezing point of B at the same temperature (in Kelvin) is close to:

[A]	0.36	[B]	0.43

[C]	0.50	[D]	0.29

88. At 298 K the standard free energy change (ΔG^o , in kJ mol⁻¹) for the cell reaction $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$ is: $[E^0_{Cu^{2+}/Cu} = 0.339 \text{ V} \text{ and } E^0_{Zn^{2+}/Zn} = -0.762 \text{ V}]$

[A] +106 [B] +212

[C] –106 [D] –212

Page 21 of 24

89. The saturated vapour pressures of two liquids A and B are respectively 50 kPa and 20 kPa at 30°C; they are completely miscible and form ideal mixture. The vapour pressure (in kPa) of a mixture of 2 moles of A and 3 mols of B at 30°C is:

[A]	25	[B]	32
[C]	35	[D]	70

90. When Cu K_{α} X-ray with wavelength $\lambda = 1.54$ Å is used, the diffraction from the (3 2 0) plane of a crystal occurs at, $2\theta = 45.6^{\circ}$. If Mo K_{α} X-ray with $\lambda = 0.71$ Å is used, diffraction from the (3 2 0) plane will be found at $2\theta =$

[A]	20.6°	[B]	21.6 [°]
[C]	22.8°	[D]	57.2°

91. The equilibrium constant for $A_2 \rightleftharpoons 2A$ is 2.0 at 30°C. The mole fraction of A at equilibrium at the same temperature is:

[A]	0.25	[B]	0.50
[C]	0.67	[D]	0.80

 92. The entropy change (in cal K⁻¹) in the isothermal reversible expansion of one mole of a perfect gas from 7.6 to 2.9 atm at 300 K is:

[A]	0.826	[B]	1.328
[C]	1.907	[D]	3.061

93. For the gas phase reaction, $H_2O + CH_4 = CO + 3H_2$, if $K_c = 3.8 \times 10^{-3} M^2$ at 1000 K, the K_p (atm²) is:

[A]	16	[B]	26
[C]	12	[D]	14

94. The decomposition reaction $2H_2O_2$ (aq) $\rightarrow 2H_2O$ (l) + O_2 (g) is first order in H_2O_2 with a rate constant $1.8 \times 10^{-5} \text{ s}^{-1}$ at 300 K. If the initial concentration of H_2O_2 is 0.3 M, the concentration (in M) after 4 h is:

[A]	0.12	[]	3]	0.06
[C]	0.23	[]	D]	0.18

95. In a gas phase reaction, $A \rightarrow products$, depending on the initial pressure, p_0 , the rate, r is found to change as shown in the table. Order of the reaction is:

p_0 / atm	1	2	4
$r / \text{atm s}^{-1}$	6	17	48
3		1 1	
[A] 0		[B] 1	
[C] 1.5		[D] 2	

- **96.** The change in the internal energy of a gas is equal to the heat supplied. The correct statement among the following is:
 - [A] the gas is expanded isothermally
 - [B] the process is carried out at constant volume
 - [C] the gas is expanded under constant pressure
 - [D] the process is carried out irreversibly
- 97. When a capillary tube with a cross sectional area a is dipped into a liquid, the liquid rises to a height of 15 cm. If another tube with cross sectional area 2a is dipped, the rise of the liquid in this tube will be:
 - [A] 10.6 cm [B] 15 cm
 - [C] 7.5 cm [D] 21.3 cm

98. The number of possible lines in the emission spectrum of hydrogen atom from the principal quantum level n = 7 to n = 3 is:

[A]	10	[B]	9
[C]	8	[D]	7

99. The wavelength of a certain line in Balmer series is observed to be 4341 Å, it corresponds to an emission from the state with principal quantum number:

[A]	20	[B]	15
[C]	10	[D]	5

100. The speed of an electron in the first Bohr orbit of hydrogen is x, then the speed of the electron in He⁺ in the second orbit is:

[A]	x/2	[B]	x
[C]	2x	[D]	4 <i>x</i>

Page 24 of 24